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ABSTRACT: The method of calculating the reflected field using the Parabolic Equa-
tion (PE) approximation described in Ref. [1] is based on an efficient iteration method.
However, the iteration scheme does not converge for certain properties of the acoustic
environment. A direct method for determining the reflected field has been established to
overcome this convergence problem and is, therefore, applicable for a wider range of acous-
tic environments. Comparison of results from both the iteration and the direct method
is shown to verify the direct method of calculating the reflected field. Furthermore, an
example is shown where the iteration method fails for the reflected field, but in this case
the direct method returns a solution to the problem. The result obtained by the direct
method is compared to the result achieved by a two-way coupled-mode model, see Ref,

[2].

1. INTRODUCTION

In underwater acoustics the reflected field and, therefore, the reverberation caused by
variations in the acoustic environment are significant for certain acoustic systems. Nu-
merical modelling of the sound propagation in the ocean gives the possibility to iden-
tify and explain the properties of the reverberation sources. In modelling of large scale
sound propagation, the reflected field or reverberation from deterministic features may
be obtained by solving the two-way wave equation, e.g. solving the wave equation for
the outgoing and incoming acoustic field. Especially, the deterministic variations in the
ocean bottom can be analyzed by two-way numerical models, where the changes in the
bathymetry are described by a finite discretization of the bottom.

Several approaches have been published to solve this kind of problems based on for ex-
ample PE, Normal Modes, Finite Element Methods and Boundary Element Methods, see
Ref. [1], [2], [3] and [4]. However, the models based on the PE approximation of the wave
equation are known to be efficient for range dependent environments, and applicable for
wide-angle sound propagation. The two-way PE model developed by M. D. Collins et al,
see Ref. [1], is capable to handle both the forward and reflected field efficiently and at very
wide propagation angles. This PE model is based on a single-scattering approach, where
the reflected field is obtained by utilizing an iteration method. The iteration scheme fails
for certain acoustic environments with moderate impedance changes and small stair-steps
for describing variations in the bathymetry. These problems may be solved by applying
a direct method for computing the reflected field instead of the iteration scheme in the
two-way PE approximation.

The direct formulation of the reflected field from changes in the bathymetry has been
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established and implemented in the PE model. The reflected field is determined by a
discretization of the variations in the bathymetry using a finite number of stair-steps and
solving the boundary conditions at each vertical interface. In order to assess the validity
of the direct formulation, an analysis of two test examples for the reflected field has been
performed. In the first test example the reference solution is obtained by the PE model
based on the iteration method for calculating the reflected field. In the second example
the iteration method does not converge, but the direct method returns a solution to the
problem. In this case the coupled-mode model developed by R. B. Evans, see Ref. [2], is
applied for generating the reference solution.

2. FORMULATION OF THE DIRECT PE METHOD

The derivation of the reflected field in the PE approximation considered is described in
Ref. [1]. A brief introduction of the derivation will be given in the following resulting in
the direct formulation of the reflected field. To derive the outgoing and incoming field
the two dimensional reduced and far-field wave equation for range independent regions is
considered. The wave equation is given by:

8*v 8 (197) ,

where z is the horizontal distance from a line source assuming plane geometry, z is the
depth coordinate below the sea surface, ¥ is the complex acoustic field and p is the
density. In case of cylindrical geometry the z in Eq. 1 is the horizontal distance from a
point source, and the spreading factor z~% has to be added the complex acoustic field.
The complex wave number & in Eq. 1 is defined as:
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where w is the angular frequency, ¢ is the sound speed and £ is the attenuation in dB per
wavelength. As Eq. 1 is written for range independent environments, the sound speed and
the density are only functions of the depth. In this case the wave equation factors, and
the terms which must be satisfied by the outgoing and incoming field can be identified.
The equation which has to be fulfilled by the acoustic field is, therefore, given by:
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where X is defined as:
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and ko is the reference wavenumber. The first term of Eq. 3 involving the term +iky must
be satisfied by the incoming field and the second term, which includes the —ikg, has to
be fulfilled by the outgoing field. The square root in Eq. 3 may be approximated by the
following rational-linear function:

\/1+X~1+Zl+ﬂj (5)

where a; and f; are complex Padé coefficients tabulated in Ref. [5] for the sum approx-
imation of the depth operator. By applying the sum approximation, the outgoing and
incoming field must satisfy:

v X
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Range dependent environments are handled by a discretization of the environment into
range independent segments forming a sequence of stair-steps. At the vertical interface
between two range independent segments A and B, continuity of the acoustic field and
the normal component of particle velocity is required. This is expressed as:

\I’i + ‘I’r = \I’t
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where W, ¥, and U, are the incident, reflected and transmitted field at the vertical inter-
face, respectively, and p4 and pp are the density in the two range independent segments
A and B, respectively. Combining the two boundary conditions and utilizing the approx-
imation given by Eq. 5 and 6, the following relation between the incident and reflected
field is obtained:

1 1 1 1 )
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The incident field and, therefore, the right hand side of Eq. 8 is known by solving for
the outgoing field, see Eq. 6, and is in the following denoted by E. The equation for
determining the reflected field is now written as:

1 1 ‘
(—-LA + ;—LB) U, == | (9)

which in general requires inversion of a large complex matrix given by L4 and Lpg for each
range independent segment A and B. To obtain a convenient procedure of solving Eq. 9
the depth operator L is written as a rational-linear product approximation as follows:
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where the X is given by Eq. 4, and the complex Padé coefficients a; and b; for the product
approximation are tabulated in Ref. [1]. The numerator N and denominator D of the
depth operator L are general banded matrices, where the number of diagonals depends on
the number of Padé coefficients in the product approximation. By applying the definition
of N and D and utilizing the property that N and D commute, e.g. N D~'=D"1 N, Eq.
9 is rewritten as:

(—I-D;WA + —I—NBD;;) v, =E (11)
PA PB

Rearranging Eq. 11 yields the following expression, see Ref. [6]:

Lpg (NADB + DAP—ANB> D7V, =% (12)
PA PB
and by matrix operations the reflected field is determined by:

1
U, = Dpg (NA.DB + DA%NB> Dypa = (13)‘

The reflected field is expressed explicitly and can hereby be calculated directly from Eq
13. The formulation does not include the iteration procedure described in Ref. [1] which
in certain cases fails. The new formulation has been implemented and is verified in the
next section by comparing results from the two-way PE based on the iteration method
and a coupled-mode model.
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3. NUMERICAL VERIFICATION

To verify the formulation of the direct solution of the reflected field in the PE model,
test example B in Ref. [1] has been adopted. In this case there is a single step in the
ocean bottom for evaluating the reflected field. The bathymetry is range independent
for ranges less than 7km with an ocean depth equal to 500m. At the range from 7km
to 10 km the ocean depth is constant at 250 m. In the water column the sound speed is
1500m /s, the density 1g/cm® and the attenuation equal to 0dB per wavelength. The
acoustic parameters for the bottom have been divided into two examples. In example 1
the sound speed in the bottom is 1700m/s, the density 1.5¢g/cm® and the attenuation
equal to 0.5 dB per wavelength. The acoustic parameters in example 2 are the same as
in example 1 except for the sound speed which is chosen to 2400 m/s.

A 25 Hz line source is placed at a depth of 50m below the sea surface assuming plane
geometry. The number of Padé coefficients n in Eq. 5 for the PE approximation is 5 for
the outgoing field and, at present, limited to 3 in Eq. 10 for the reflected field in both
example 1 and 2. A convergent solution is obtained for both examples by choosing the
depth grid spacing to 1m and a range step of 5m in the PE modelling. The presented
results are obtained by running the models on an IBM 355 RISC SYSTEM/6000 using
the maximum optimization level during the compilation.

The reflected field in terms of transmission loss in dB for example 1 using the PE model
based on the iteration and direct method is shown in Fig. 1 and 2, respectively.
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Figure 1: The reflected field in example 1 determined by using the PE model based on
the iteration method.



100

Loss (dB)
60

55

50

45

35

30

25

20

o] 1 2 3 7 8 9

4 5 6
Range (km)

Figure 2: The reflected field in example 1 calculated by using the PE model based on the
direct method.

The agreement between the results of the reflected field obtained by the PE model based
on the iteration and the direct method is excellent. The implementation of direct method
in the PE mecdel is performed successfully, and the direct method handles the environment
given in example 1 as the iteration method. The CPU time for the two-way analysis is
31 sec and 50 sec for the iteration and direct method, respectively.

In Fig. 3 and 4 the reflected field for example 2 in terms of the transmission loss in dB is
shown calculated by using the direct PE model and the coupled-mode model, respectively.

In example 2 the iteration method for calculating the reflected field does not converge
caused by the increased sound speed in the bottom. A fully convergent solution is obtained
by including 50 modes and a total depth to the false bottom of 1500 m using the coupled-
mode model.
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Figure 3: The reflected field for example 2 calculated by using the PE model based on
the direct method.
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Figure 4: The reflected field for example 2 calculated by using the coupled-mode model.

There is consistency in the solution for the reflected field obtained by the PE model based
on the direct method and the coupled-mode model. However, there is a slight lower loss
for the direct PE model at the position of the step in the vertical direction. This small
difference between the PE and the coupled-mode model is caused by the limited number of
Padé coefficients in the scattering routine of the PE model. The CPU time for the analysis
of example 2 is 50 sec and 19 sec for the PE and the coupled-mode model, respectively.
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4. CONCLUSIONS

The method of determining the reflected field using the PE approximation has been
improved by introducing the direct PE formulation. It has been shown that the direct
method returns the same solution as the iteration method analyzing the same acoustic
environment. However, if the environment has certain properties the iteration method
for determining the reflected field fails, but the solution can be obtained by the PE
approximation based on the direct formulation. In this case the reference solution is
found by using a coupled-mode model. There is a slight difference between the result
obtained by the direct PE and the coupled-mode model, which is caused by the limited
number of Padé coefficients in the scattering routine of the direct PE model.

5. ACKNOWLEDGEMENTS

This work has been supported by the EC under the MAST II, Contract No.: MAS2-CT92-
0019. The author gratefully acknowledges Dr. M. D. Collins and Dr. R. J. Cederberg,
Naval Research Laboratory, Washington, USA, for valuable support and discussion during
the formulation of the direct PE model.

References

(1] M. D. Collins and R. B. Evans, “A two-way parabolic equation for acoustic backscat-
tering in the ocean”, Journal of Acoustical Society of America 91 (3), March 1992,
pp. 1357-1368. .

[2] R. B. Evans, “A coupled mode solution for acoustic propagation in a waveguide with
stepwise depth variations of a penetrable bottom”, Journal of Acoustical Society of
America 74 (1), July 1983, pp. 188-195.

[3] J. E. Murphy and S. A. Chin-Bing, “A finite-element model for ocean acoustic prop-
agation and scattering”, Journal of Acoustical Society of America 86 (4), October
1989, pp. 1478-1483.

[4] P. Gerstoft and H. Schmidt, “A boundary element approach to ocean seimoacoustic
facet reverberation”, Journal of Acoustical Society of America 89 (4), April 1991,
pp. 1629-1642.

[5] M. D. Collins, “Higher-order Padé approximations for accurate and stable elas-
tic parabolic equations with application to interface wave propagation”, Journal of
Acoustical Society of America 89 (3), March 1991, pp. 1050-1057.



103

[6] M. D. Collins, “Higher-Order, Energy-Conserving, Two-Way, and Elastic Parabolic
Equations”, PE Workshop II, Proceedings of the Second Parabolic Equation Work-
shop, Edited by Stanley A. Chin-Bing, David B. King, James A. Davis, and Richard
B. Evans, May 1993, pp. 145-168.






