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The accuracy of the adiabatic approximation is known to be suspect when applied
to certain environments, particularly areas along the continental shelf. However, it
is often difficult to tell, a priori, if mode coupling is present in a given environment.
In an attempt to quantify the degree of mode coupling, the classical mode coupling
coefficients are related to energy transfers between modes. As an illustration of this
relationship, the coupling coefficients for a rigid bottom, iso-velocity environment
with a range-dependent bathymetry were derived analytically. In deriving these
coefficients, it was discovered that symmetries in the weak coupling coefficients,
which are correct for most other environments, must be modified for the rigid
bottom case. The potential for energy transfer was also determined. Simple ratios
were derived which may be used to determine the presence and strength of mode
coupling in this case. The use of mode coupling coefficients in this way clearly
shows when the potential for mode coupling exists, and the coupling strength, if
present. An extension to more realistic boundaries is outlined. The method may
be used to test the accuracy of other means of predicting the presence or absence
of mode coupling, as well as to provide additional useful information, such as the
precise modes engaged in coupling.

1 Introduction

When choosing a model for propagation studies or matched field processing,
one must often assess the validity of the adiabatic approximation in a given
range-dependent environment. Certain propagation models (e.g., ray and adi-
abatic normal mode models) are computationally fast, but assume no energy
transfer between modes, while others allow for mode coupling, but are rela-
tively slow computationally. This paper is a first step toward the development
of fast quantitative measures of the validity of the adiabatic approximation
which may be easily applied by non-specialists and which are applicable in a
wide variety of realistic environments.

One set of numbers which measure the degree of coupling in a given en-
vironment is the set of mode coupling coefficients which arises from the prop-
agation physics. The use of these coefficients for the purpose of determining
the validity of the adiabatic approximation has a number of advantages: the
coefficients describe precisely where mode coupling occurs, they give informa-
tion on which modes are engaged in coupling, and they may be weighted and
summed to provide a single number which may describe the degree of coupling
in a given region. Unfortunately, calculating the mode coupling coefficients
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can be a computationally intensive task, and the effects of mode coupling may
be seen at ranges well past those at which the coupling actually occurs.

The environments under study here are iso-velocity sound speed channels
bounded by a range-dependent rigid bottom and a range-independent pressure-
release surface; the normal modes and coupling coefficients may be calculated
analytically.

In Section 2, the coupling coefficients for the iso-velocity environment will
be calculated. Certain symmetries in the weak coupling coefficient which are
valid for many environments will be shown to fail here. In Section 3 the prop-
agation physics will be investigated in order to gain insight into the precise
relationship between the coupling coefficients and the observed effects of cou-
pling; this relationship is significantly more complex than the term “coupling
coefficient” might suggest. Nonetheless, it will be shown that strong coupling is
related to an appropriately defined modal potential energy and weak coupling
to a modal kinetic energy. In Section 4, simulations will be used to further
investigate the use of coupling coefficients as an indicator of mode coupling.
Section 5 will contain conclusions and suggestions for further work.

2 Calculation of Coupling Coeflicients

The environment under study is described by a constant sound speed ¢ and
density p, and is bounded below by a rigid surface at range-variable depth
z = H(r) and above by a pressure-release surface at z = 0. A monochromatic
omnidirectional source with frequency w is located at depth z;.

A modal decomposition of the velocity potential ¢(r, z,w) in terms of local
mode eigenfunctions Z, (r, z) and amplitudes ¢, (r,w) may be written

W6, 50) = 3 pnlr)Za(r2) = E«w 2,u), &)

where

Yn(r, 2,w) = @n(r,w)Zs(r, 2), (2)
and the sums are over the propagating and evanescent modes. The normaliza-
tion relations for the local modes Z, (r, z) are

H(r)
/ PZm(7,2)Zn(r,2) dz = Spmn. (3)
0

The Helmbholtz equation for the region » > 0 leads to the coupled mode
equations 12
0222 (7, 2) + [k — k2(w)] Zn(r, 2) = 0, (4)
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[a,, + Lo 42 (w)] onlr, )

- Z [Amn(r) + Bmn (7)0:] m(r,w) = 0, (5)

m=1

where k = w/c, kZ(w) is the mode eigenvalue or horizontal wavenumber, &,
indicates the partial derivative with respect to r, 0, indicates the second
partial derivative with respect to r, and the strong and weak mode coupling
coeflicients, respectively, are defined by

o
3
b~
5

I

H(r) 1
/ pZn(r, 2) [6" + ;5,] Zn(r, 2) dz, (6)
0

H(r) )
Bun(r) = / pZn(r,2) (00 Zin(r, 2)] d. (7)

The adiabatic approximation is accomplished by setting Ay, (7) = Bpn (r) = 0
for all m, n, and further assuming the WKB approximation. In this paper, it
is assumed that the effect of the WKB approximation on the calculated field
is negligible. .

Under the boundary conditions that v(r, z,w) vanishes at z = 0 and sat-
isfies the Sommerfield radiation condition, and that 8,%(r, z,w) vanishes at
z = H(r), the local modes are:

n—1)nz
Zn(r,2) = H%r) sin ( 7 (zr )) (8)

for 0 < z < H(r). Substituting Eq. 8 into Eqs. 6 and 7 and integrating leads
to the mode coupling coefficients:

{ (=)™ (Em=1)? H'(r) .. #n,

B (r) = 2(1;17T)(m+n—1) H(r))?

—H if m=n,

(%)

Bma(r) | (-1)2"‘-”(2"1-1)2

2— - .
« _Hu(;"' +n(§7i n (2n-1) ) H'z(r)] ifm # n,
Amn(r) = 2H(r) 2 m24n?-m-n ) H?(r) (10)

[g+“@%Y”Em]_swm+£m

4 3 H(r) 2 "H(r) T rH(r) if m =n,

where H'(r) = dH(r)/dr and H"(r) = d?H(r)/dr?.
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Under many conditions, Eqs. 3 and 7 lead to the relations B, (r) =
—Bum(r) and Bpu(r) = 0.13%5 These symmetries do not hold for the rigid
bottom case. The discrepancy arises since the mode functions in Eq. 8 are non-
zero in a depth domain which varies with range. Taking the range derivative

of Eq. 3 yields
d [ 50 6 mn
o (/0 Zm (7, 2)Zn(r, 2) dz) ==, = 0.

Since the upper limit of the integral is a function of r, Leibniz’s rule® must be
applied to properly interchange the order of differentiation and integration, so
that, using Eq. 7:

Bmn(r) + Bam(r) = =2 (r, H(r)) Z (r, H(r)) H'(r). (11)

3 Coupled Modes and Energy

Multiplying Eq. 4 by ¢n(r) and Eq. 5 by Z,(r,2), and summing the results
leads to

oQ

(V24 E2(@) ¥n(r,2,0) = Zn(r,2) ) [Amn(r) + Bmn ()0 om(r,w)

m=1

+20,on(r,w)0r Zn (7, 2)

—n(r,w) [Q’—Z"Tiﬁ + Bpr Zn (v, z)] » (12)

where ¥, (7, z,w) is defined in Eq. 2. ¥, (7, z, w) may be expressed as an infinite
sum

Yn(r, 2,0) = ¢<°>(rzw)+2[¢<3>rzw) e (rzw)], (1)

such that
(V24 B2@) $0(r 2,0) = —galr,e) [""f S22y 7o, z)]
+20rn (r,w)0r Z, (7, 2), (14)
(V2+ kle(w)) ¢7(7f12(7';2:“’) = Amn(r)Zn(r, 2)pm(r,w), (15)
(Vz + ki(w)) wr(nwn) (r,2,w) = Bmn(r)Za(r, 2)0rpm(r,w). (16)
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The boundary conditions on ;l),(,,o), ,(5,1, and gl),(nwn) are the same as those for
Yn.

The partition of ¢, (r, z,w) was achieved so that the effects of strong and
weak coupling from each mode can be easily identified. The single uncou-
pled equation Eq. 14 is seen to be Eq. 12 with Apmn(r) = Bnn(r) = 0, so
that 1,[),(,,0) (7, z,w) is the velocity potential obtained under the adiabatic approx-
imation without the WKB approximation. The set of equations Eq. 15 each
have a right hand side multiplied by A,y (7) so that 2/15,‘?,)1 (r, z,w) represents
the change in 9, (r, z,w) due to strong coupling from mode m. Similarly, the
form of the set of equations Eq. 16 implies that ¢,(nwn) (r, z,w) represents the
change in v, (r, z,w) due to weak coupling from mode m. Note that Egs. 14 —
16 still represent coupled equations; they were not derived as an improvement
over Egs. 4 and 5 in calculating the field. However, Egs. 15 and 16 are of the
form of Helmholtz equations where the terms on the right hand sides represent
distributed sources.

The right hand side of Egs. 15 and 16 may be expanded into an infinite
collection of vertical line sources. That is, the coupling into mode n from
mode m at range r can be seen to be due to vertical line sources with strengths
Amn(P) Zn (7, 2)pm(r,w) /47 and By (1) Zn(r, 2)0rom (r,w) /47, By calculating
the farfield time-averaged power output from each of these sources, the effect
of any coupling which occurs at range r will be determined, and then related
to the total kinetic and potential energy in the mode m.

Consider first the strong coupling equations Eq. 15. The solution of this
equation with the given boundary conditions is difficult, even in the case where
Amn(r) = Al,,6(r — 7'), i.e., where the right hand side specifies a line source.
The proper solution would take into account the effects on 1/17(5,2. of bathymetry
changes far removed from /. This detracts from the goal of determining the
degree of coupling at range r’ independent of the rest of the environment. We
therefore calculate not gbﬁ,‘f,z but the value {,(,;S,Z which is the solution of Eq. 15
in the free-field, which may be calculated by separation of variables: 7

£ (rzw) = Amn (r/)%;srf)zn(r/,z) HO[(r — /)]
= Amn (r')em(r',w) Zn (r', 2) ¢ilbn (@)(r—r")—m/4]
\/8m3(r — ') ky (w) ’

where H, él)(r) is the zeroth order Hankel function of the first kind, and the
Zn(r', z) are defined in Eq. 1. This is a free-field solution which, it can be
argued, ignores the very thing which gave rise to the coupling in the first
place, i.e., a range-variable boundary condition. However, it is one purpose of

(17)
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this calculation to attempt to isolate the effects of coupling at range r from
those at a different range »’.

The time-averaged far-field power output may be calculated:
H(r")
PR = 2n [ (=) [ 5w) 8] ds
0

H(r'")
= —27rz'wp/ (r— r’)< ) (r, 2,w)VES) (7, 2,w) -f*> dz
: 0

= 21%[Am,,(r’)]zlsom(r',w)lz, (18)

where (---) represents the time average, # is a unit vector pointing toward
positive r, and I,(,,,,l (7, z,w) is the time-averaged far-field intensity. The integral
over depth was calculated using Eq. 3.

The modal potential energy Vi, (r,w) will be defined as the total potential
energy at some range r which the field would have if the mode m were the only
mode excited. Using the standard equation for potential energy: &

1 H(r) 2d w? H(r) 2d
Volrw) = o [ o)l dr= 5 [ plntrnn0)f ds
2
W
= %lﬁon(r’w)lz' (19)

Therefore, comparing Eq. 19 and Eq. 18, gives the relation

P,S,;S;?(r',w) =

A (') Vi (', w). (20)

Next, consider Eq. 16, the weak coupling equations. The time-averaged
far-field power output, due to a line source at » = ¢/ in a free-field environment
with strength Bp,, (r')Z,(r, 2)0rom(r,w) /4, is

w
P&VX)(T')“’) = mwmn(rl)lz |Or om (r,’“’)|2- (21)

The modal kinetic energy T, (r,w) will be defined in a manner similar to
the modal potential energy, i.e., the total kinetic energy at some range r which
the field would have if the mode m were the only mode exc1ted Using the
standard equation for kinetic energy: 8
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1

H(r) )
T (7, w) 3 / plvm(r, z,w)|” dz
0

1 [H() 5
= —2-/ p\Vom(r, z,w)|” dz
0

H(r) '
= {@%wwn/ n(r2)]? dz

H(r)
+lomr)l? [ p (1002 + 0.2, 2T
H(r)
+<pm(r,w)6r<pm(r)/0 PZm (1, 2)0p Z (7, 2) dz}. (22)

With some manipulation, including the use of Eq. 3, Egs. 6 — 10, and Leibniz’s
rule, one obtains
[Or orm (T, “")]2

Tin(r) 2 H'(r)

Tm(r,w) = B + 2 gom(r, ) ‘PTn(raw)af‘<Pm(7')w)2H( ) ( 3)
where
, H'(r)  H'(r) 2] [H'(r)]*[13
ﬂ”’z“ww+ﬂub‘ﬂ‘bm][+(”]
mm-H'[  [@E)r
NS [” B ] |

The first term in Eq. 23 is proportional to Pmn)(r w). Also, note that T, (r)
increases with increasing m so that the ratio

w larﬂ"m("' )l
() = om0l 24

is an environment-dependent function which, all else being equal, tends to
decrease with increasing mode number. Eq. 21 may be written

P (', w) = |Bpn ()| 7 (7, w) T (7', ). (25)

The degree of strong coupling is therefore, according to Eq. 20, related to
the potential energy of the individual modes, while weak coupling, according
to Eq. 25, is related to the kinetic energy of the individual modes.
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Aside from any qualitative understanding of mode coupling Egs. 20 and 25
may provide, certain quantitative predictions may also be made. The general
decrease in T, (r) with increasing m indicates that the effects of weak mode
coupling should decrease with increasing mode number, even if the weak cou-
pling coefficients themselves are identical. The dependence of P (r) onw and
¢ indicate that the effects of strong coupling should decrease with increasing
frequency or decreasing sound speed, even though the coupling coefficient is
independent of frequency. Also, if something is known about the distribution
of potential and kinetic energy in the sound field, the relative effects of strong
and weak coupling can perhaps be better understood.

4 Simulations

In this section, the dependence of weak coupling on mode number will be
tested using simulations. Strong coupling will not be investigated here; the
strong coupling coefficients are usually much smaller than the weak coupling
coefficients, with the somewhat surprising result that the effects of “strong”
coupling are usually quite small.®1° The sound field was modeled using Porter’s
KRAKEN normal mode program, ! which allows for a perfectly rigid bottom
and may be run either using adiabatic or one-way coupled modes with nearly
identical input files.

Since the weak coupling coefficients given in Eq. 9 are directly dependent
on the factor H'(r)/H(r), then setting the bottom depth equal to an expo-
nential function of range, H(r) = Hoe™"", where Ho and « are appropriately
chosen constants, will produce a non-zero, constant weak coupling coefficient.
(Also note that Eq. 10 indicates that the strong coupling coefficients will also
be of the form of a constant plus a 1/r term.) In order to minimize nearfield
effects at the receiver, the bathymetry used here has the form

_ Ho if r < ro,
H(r) = { Hoe™1=70) if 7 > . (26)

The coupling coefficients are identically zero in the region r < ro.

The frequency f and initial depth Hy were chosen so that a fairly small
number of propagating modes exist, thereby reducing processing time and
storage requirements. With f = 100Hz and Ho = 200 m, 27 modes exist in
the region r < ro. The coupling coefficients By, (and therefore v) must be
chosen small enough to allow the sound to propagate, but large enough for the
coupling effects to be significant. The relationship between B, and vy may
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Figure 1: Rigid bottom, iso-velocity test bathymetries with constant weak coupling coeffi-
cients. In each case, Bps (pr+1) = 0.1 at ranges between 10 and 11 km in range, and zero at
ranges less than 10 km.

be determined from Eq. 9:

_ 2Bmn (n—m)(n+m—1) .

7= TH, (2m — 1) (27)

Model runs on a range-independent environment with depth Hp show that
7o = 10 km should be more than sufficient. H(r) was therefore defined in the
region 0 < r < 11 km, with 7o = 10 km. '

A set of environments with bathymetries described by Eq. 26 were cho-
sen, each with a “featured mode” M. The depth decay constant v for each
environment was chosen such that By ( M+1) = 0.1. The bathymetries for the
environments with M = 1,5, 10 are plotted in Figure 1.

In addition, each environment was ensonified with 27 sources (c01nc1d1ng
with the number of propagating modes at 7 < 7o) spanning the 200 m water
channel. The sources were weighted in order to excite the featured mode and
only that mode. This was achieved by using LU decomposition !2 to solve for
W in the matrix equation

¥ (r,w) = ®(r,w)W(r,w), (28)

where ¥; = §;3r is the mode amplitude of the jth mode at the range r, ®;;
is the mode amplitude of the jth mode due to the ith source, and W; is the
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Figure 2: Featured mode amplitudes as a function of range relative to the amplitude at r = 10
km for four environments . Adiabatic normal mode theory predicts a loss of approximately
0.5 dB/km.

weight applied to the ith source. Eq. 28 was solved with 7 = 1 m, and w
corresponding to 100 Hz. In all cases, the mode amplitudes for modes m # M
at r = 1 m were more than 50 dB down from the mode M amplitude and, in
the vast majority of cases, these modes were more than 125 dB down.

Figure 2 shows the absolute value of the featured mode amplitudes in
their respective environments for M = 1,5,10,15. Plotted are the ratios
oM (r)/em(r = 10 km) expressed in dB. Note that each featured mode ampli-
tude decreases at a rate much faster than the roughly 0.5 dB/km predicted by
adiabatic normal mode theory. However, the change is less pronounced (and
the propagation therefore “more adiabatic”) in the M = 5 conditions than in
the M = 1 conditions, and more pronounced (and the environment therefore
“more coupled”) in the M = 10 and M = 15 conditions.

To further investigate this phenomenon, Figure 3 summarizes the data
from a larger set of conditions by displaying the ratio @a(r = 11 km)/@ar (r =
10 km), expressed in dB, where ¢ (r) was calculated in the environment where
Bpr(ar4+1) = 0.1. While this ratio decreases over the first three modes, indicat-
ing more adiabatic propagation, the difference increases for M > 3, indicating
more coupled propagation.

The featured mode kinetic energies for M = 1,5,10,15 (calculated from
Eq. 23) are plotted as a function of range in Figure 4. All modal kinetic
energies are plotted relative to 73(r = 10 km) in the M = 1 environment

11
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Figure 3: Featured mode amplitudes at r = 11 km relative to the amplitude at r = 10 km

for 13 different environments.
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Figure 4: Featured mode kinetic energies (calculated from Eq. 23 as a function of range for
M =1,5,10,15.) Plotted values are relative to T1(r = 10 km) in the M = 1 environment.
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Pigure 5: Featured mode kinetic energies at 7 = 10 km relative to the value for M = 1.

(where B1a = 0.1). Concurrent with the decrease in coupling exhibited in
Figure 2 between the M = 1 and M = 5 environments, there is also a decrease
in the slope of the featured mode’s kinetic energy as a function of range.

Figure 5 shows the initial (r = 10 km) modal kinetic energies for the
featured modes in their respective environments. It is clear from the chart
that the featured mode kinetic energies at r = 10 km is an increasing function
of mode number. The change in Ty (r = 10 km) is far less dramatic than the
change in the featured mode kinetic energies over the run of the slope. Figure 6
charts the ratio of T (r = 11 km)/Ta(r = 10 km) (expressed in dB) for the
featured modes as a function of mode number. Since the dependence of the
modal amplitude on range in the upslope area was exponential (see Figure 2)
it is perhaps no surprise that the tendencies shown in Figure 6 are similar to
those in Figure 3, that is, both featured mode amplitude and featured mode
kinetic energy diminish more slowly in the first three environments, and more
quickly in the remaining environments.

The ratio 7,,(r,w), defined in Eq. 24, is nearly constant with respect to
range for the featured modes in each environment studied. Figure 7 shows
the value of 75, (r = 10 km) for several environments. As expected, this ratio
decreases with mode number.

In short, the similarities between Figures 3 and 6 and between Figures 2
and 4 tend to indicate that weak mode coupling and modal kinetic energy
are strongly linked, as predicted in theory. Also, the decrease in Tar(r) with
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Figure 6: Change in featured mode kinetic energies, from r = 10 km to » = 11 km, as a
function of featured mode number.
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Figure 7: The value of 7 (r = 10 km) for the featured modes in their environments.
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increasing M, predicted in Section 3, is validated in Figure 7. Based on the
analysis in Section 3, and the observed behavior of 747 (r), one might conclude
that the trend toward adiabatic propagation begun in the first three environ-
ments in Figures 3 and 6 would continue into higher mode numbers M. The
fact that it does not may be due to coupling between mode M and mode
M —1. Eq. 9 shows that |BM (M+1)/ By (M—l)l =1-(1/M), so that at higher
modes more coupling “down” to lower modes 1s expected. There may also be
other effects, as yet not understood, which precipitate the rapid decrease in ki-
netic energy, and increase in coupling, with increasing featured mode number.
Further investigation is required to reveal the exact mechanisms involved.

5 Conclusions

Many theoretical discoveries were made in this research. In Section 2, the weak
and strong coupling coefficients for a rigid bottom iso-velocity environment
were calculated, and the results were shown to depend on the ratios H'(r)/H (r)
and H"(r)/H (r), where H(r) is the bottom depth as a function of r, and H'(r)
and H" (r) were the first and second range derivatives of H(r). The relationship
between the weak mode coupling coefficients (i.e., Bpnn = —Bnm) Was shown
not to hold in an iso-velocity rigid bottom environment .

In Section 3, weak mode coupling was associated with a “modal kinetic
energy,” (i.e., the kinetic energy which would be present if only a single mode
were excited). Likewise, strong mode coupling was associated with a “modal
potential energy.”

The theory in Section 3 above must be improved for quantitative predic-
tions to be made. The theory must be extended, perhaps by doing away with
the free-field approximations to the radiated power in Eqs. 18 and 21, and
certainly by inclusion of more general environments.

The purpose of this research is to develop aids for the matched field pro-
cessor or other propagation modeler to better determine when coupled mode
models are necessary. It is clear, from the simulations in Section 4, that sim-
ply describing a single coupling coefficient does not provide this service, since
the effects of coupling on mode amplitude etc. may vary widely, even if the
coupling coefficient to the nearest neighbor mode is kept constant. With some
additional information, however, it may be possible to provide the user with
the information he requires.
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