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Abstract

Resolution analysis of travel-time tomographic inversion of seismic records is
essential for correct data interpretation. If infinite signal bandwidth can be as-
sumed, then asymptotic ray theory provides the convenient framework to state
the problem and to model delays. In seismic experiments, however, infinite band-
width is a highly idealized situation, and the effect of band-limitation needs to be
carefully considered. Wave theory shows that bandlimited signals propagate from
source to receiver along “physical” rays, or Fresnel rays, with finite cross-section
instead of the infinitely thin “mathematical” rays. For a given medium velocity,
the cross-section radius depends on bandwidth and source-receiver distance. Ry-
tov approximation of the scattering problem can be used to analyze the sensitivity
of recorded time delays to small velocity perturbations in wave transmission ex-
periments. This theory leads to the counter-intuitive prediction that the greatest
delay is obtained by perturbations off the mathematical ray, though still within
the Fresnel ray. The paradox gets striking in 3-D geometry: a point perturbation
on the mathematical ray produces no delay, and is therefore undetectable. We use
2.D modeling of the full wave equation to investigate numerically this paradox,
and more generally, the resolution of bandlimited seismic records.

1. Introduction

Tomographic imaging in Geophysics is mostly based on ray-theoretic travel-time

tomography 3. Asymptotic ray theory assumes that signals have infinite bandwidth;
in practice, this requirement means that velocity anomalies should be smooth enough
to be correctly recovered. This condition hardly holds in geophysical exploration: the
earth’s crust has significant heterogeneities of smaller extension than the wavelengths
used to sample them. Consequently, the resolution given by ray-theoretic tomography
is illusive and not all details appearing in the images are reliable. It is known that the
effective resolution of a tomographic experiment is given by the Fresnel radius, which is
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a square root function of both the signal dominating wavelength and the source-receiver
distance.

When ray theory assumptions do not hold, the problem may be correctly handled
by diffraction tomography, which fully accounts for wave phenomena 2% However,
this method is stated in the frequency domain and requires continuous sources and
long observation times; such experimental conditions are at odds with seimic acquisi-
tion requirements. To overcome these difficulties, Woodward and Rocca!®'® proposed
the wave-equation tomography, which is stated in the time domain and accounts for
diffraction effects. This theory allows to discuss the effective resolution of travel-time
tomography with band-limited signals. Based on the Rytov solution to the weak scat-
tering problem, it leads to the counter-intuitive prediction that the greatest delay is
obtained with velocity perturbations off the mathematical ray (the Fermat’s path),
though still within the Fresnel radius. The paradox gets striking in a 3-D geome-
try: a point perturbation on the mathematical ray produces no delay, and is therefore
undetectable. We use 2-D spectral element modeling of the full wave equation to inves-
tigate numerically this paradox and, more generally, resolution of band limited seismic
records. The setting of the numerical simulations reproduces a seismic experiment of
cross-well tomography.

Section 2 introduces the analytical theory; Section 3 describes the numerical model
and modeling technique; the results of the simulation are discussed in Section 4.

2. The theory

2.1. Mathematical raypaths

Travel-time tomography solves the problem of recovering an unknown velocity field
from arrival-time measurements of acoustic or seismic waves. The integral equation
representing the problem is’

Hg;s) = [ w(r)Lir;s, g, w(x)]dr, (2.1)

where t is the travel-time between the source s and the receiver (geophone) g, r is
the position vector, w = 1/c is the slowness (reciprocal of velocity) in the medium, L
is a distribution representing the raypath [i.e., +0co along the ray, 0 elsewhere]. This
equation is nonlinear in w, since it appears both as a factor in the integrand and as an
argument of L. If we decompose the unknown slowness field in a known background
field wo plus a small perturbation Aw, equation (2.1) can be linearized as:

Ab(g;s) = f Aw(r) Lo[r; s, g, wo(r)] dr, (2.2)

where At is the time delay of the measured signal with respect to the travel-time ¢, in
the background medium !. This expression is a generalized Radon transform, meaning
that the unknown perturbed velocity field is sampled with line integral projections
over unperturbed raypaths Lo. The raypath represents the resolving kernel of ray
tomography: having vanishing thickness, resolution is complete in any direction normal
to the ray, while it is null along the ray. The aim of tomographic inversion algorithms
is then the recovery of the unknown velocity field from data obtained with a dense
coverage of rays.

In the simplest instance of tomography, rays are straight lines, as when the back-
ground medium is assumed homogeneous. For instance in a 2-D space, if we represent
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straight lines in polar coordinates (p, ), with p the distance from the origin and ¢ the
normal direction, the inverse Radon transform takes the well known form?:

Au(r) = [* Atp(r, 9), ¢1d4, (2.3)

with 1 1
A5, ¢) = ~50Hp 4) x . (2.4)

In (2.3) the function p(r, ¢) maps the angle ¢ in the radial parameter of the straight
line with angle ¢ through r. The equation makes thus clear that the solution for Aw
is obtained “backprojecting” filtered data A¢* over straight rays; the asterisk operator
in (2.4) indicates convolution with respect to variable p. The inverse Radon transform
can be generalized to the case of curved rays.

2.2. Monochromatic wavepaths

Ray theoretic tomography is rooted either in the eikonal equation or in the Fermat’s
principle, and is therefore valid in the asymptotic limit of high frequency—i.e.: when
the slowness perturbation wavelengths are much larger than the signal wavelength.
Otherwise, the full wave equation has to be considered. Under some limiting assump-
tions concerning an appropriate knowledge of the source wavelet and the availability
of noise-free data, two wave-theoretic equivalents of equation (2.2) can be obtained by
linearizing the scalar wave equation according to either Born and Rytov methods!®.
Born approximation is suitable to describe the backscattered field, as in reflection
problems. In the case of transmission experiments (i.e.: forward scattering), the Rytov
approximation is more appropriate 6.

2.2.1. Rytov approzimation

The Rytov approximation is based on the representation of the wavefield by an expo-
nential with complex argument ¥ = exp(®). In such a way, the real part of & accounts
for the wave amplitude, and the imaginary part for the phase. This decomposition in
amplitude and phase is a further reason to use this approximation in tomography, since
phase can be directly related to travel time. The Rytov weak scattering approxima-
tion relates linearly the wavefield rate of change A® with the objective function O —
representing the velocity anomaly — and the incident wavefield ¥o. It is. written as:

N Golg; T, co(r)] o[r; s, co(r)]
A®(g;s) = / o(r) e alo) dr, (2.5)

O(x) = k() [1 - "'3(‘)] ~ 2k3(x) ‘tc(”) (2.6)

c(r) (r) ’
where ko is the background wavenumber, and Gy is the Green’s function of the back-
ground medium, given in 3-D by

_ exp(ikolx])
Go(l‘) - 4-7l'|1'| ’ (27)
and in 2-D by )
Go(r) = %H((,l)(ko|r|). (2.8)
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Hél) is the zero-order Hankel function of the first kind.

For a point source, the unperturbed wavefield ¥, reduces to the Green’s function
Go. With this substitution, and making the dependence on the velocity explicit, by
using the approximate expression (2.6) for the object function O, the Rytov formula
(2.5) is written as:

na(g;s) = | Acgg)co(r;s,g) dr. (2:9)
Woodward 8 calls the symbol
£0(r; s, g) - 2]9'6’(1‘) Go[l‘; g Co(r)]GO[r; S, CQ(I‘)] (2_10)

Golg; s, co(T)]

the Rytov “wavepath”, for the formal analogy between equations (2.9) and (2.2).

Lo is the resolving kernel in wave-theoretic tomography. It is an oscillating function
with amplitude decaying as |r|~* for the 2-D case and as |r|~? for the 3-D case, in the
limit |r| — oo; in the same limit, the radial wavelength approaches half the wavelength.
The zeros of the imaginary part of the Rytov wavepaths are confocal ellipses and ellip-
soids in the 2-D and 3-D spaces, respectively. They are the boundaries of the Fresnel
volumes, i.e.: regions from where diffracted energy interferes either constructively or
destructively with the direct arrival. The innermost Fresnel volume is the Fresnel ray.

The necessary condition for Rytov approximation to be valid 12 ig that the phase
change over a single wavelength be small, that is:

A A 2
=> (qup) : (2.11)

Note that the size of the object is not a limiting factor in the Rytov approximation; it
is only required that the wavefiled change over a wavelength be small.

2.3. Bandlimited raypaths

A long observation time is necessary for the precise determination of phase shifts,
the wave theoretic equivalents of ray theoretic time delays. The main drawback of this
requirement, in seismic experiments, is that long observation times result in contamina-
tion of the recorded time series with noise and later arrivals. To reconcile wave-equation
tomography with time-delay tomography, Woodward 5 maps the immaginary part of
phase perturbation S{A®] to time dividing it by w. In the hypothesis that phase is
linear with frequency (no dispersion), the time thus obtained is frequency independent.
The no dispersion condition is an approximation not only in the real world, but even
in simpler models. For instance, in an homogeneous medium where the velocity field
varies rapidly on the scale of the source wavelength, wavelets are affected by geomet-
rical frequency dispersion '®. This condition can be partly relaxed taking the average
of wave-theoretic time-delays over the bandwidth:

At = /wzwm. (2.12)

Aw Ju, w

Using equation (2.9), it is convenient to write the above expression as

At = / ACES)LAW(r)dr , (2.13)
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where

1 @2 §[Lo(w,r)]
Lau(r) = 5= f 0 (2.14)
is the bandlimited raypath, which is the resolving kernel for bandlimited time-delay
tomography.

In equation (2.14), all signal components are assumed to have equal energy, or, in
other words, the signal Fourier spectrum is a box-car function. For a signal charac-
terized by a generic bandlimited spectrum F(w), we use for equation (2.14) the more
general form

ot = [Py Folern)

where P(w) = |F(w)[?/ [&° |F(w)[’dw is the normalized power spectrum of the un-
perturbed signal. Equations (2.14) and (2.15) can be seen as the resolution pattern
corresponding to the given bandlimited signal.

For a point source in a 3-D space, the formal integration of (2.14) leads to:

dw, (2.15)

wa

= L g —s| sin(wT(r)) —wt(r) cos(wT
LAw(r)—Mw[w(r)lzlr_g”r_sl{ (wr(x)) - wr(r) cos (wr(x))| , (216)

w1
where

r—s|+[r—g|—|g—s|
C

7(r;s,8) = (2.17)
is the diffraction delay. It can be easily seen that 7(r;s,g) = 0 is the equation of the
mathematical ray. For a point source in a 2-D space (3-D line source), the resolving
kernel is:

_ -1 l lg —s|
Lau(r) = 2P Eler O\ =gl 3] (2.18)
D o) - () o D)

where C and S are the Fresnel integrals. The asymptotic approximation of the Hankel

function
2 .
H(z) ~ \/Eexp[z(m —/4)], (2.19)

valid for large values of the argument (z 3> 1), was used to derive equation (2.19).

For a generic signal spectrum, equation (2.15) has no formal solution, and is to be
integrated numerically.

Band-limited, or physical, rays are the volumes through which energy propagates
from source to receiver, and may be considered, in some sense, as filtered mathematical
rays in the pass-band [w;,w;]. They share common properties in both 3-D and 2-D
spaces. They are symmetrical with respect to source and receiver and extend behind
these points (Figure 1). Moreover, they have a singularity at source and receiver
position, a fact which has some strong applicative implications. For instance, in seismic
exploration on land, deep anomalies can be hidden by surface inhomogeneities close
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Fig. 1. Rytov bandlimited raypaths. (a) 2-D, and (b) 3-D. In the 3-D case, a longitudinal
slice across the raypath is represented. The source-receiver distance is 519.2m and the signal
has a constant energy distribution within a bandwith of [0Hz, 200Hz] (box-car energy power
spectrum). A different scale is used for the two spatial directions.
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to the source; careful analysis of the geophone sites is also necessary to obtain the
so called “static corrections”. A remarkable, and paradoxical, property is that they
have a minimum across the mathematical ray. This is a property that Fresnel rays
inherit from monochromatic wavepaths. From (2.16), the expression of 3-D wavepaths
in the vicinity of the mathematical ray is controlled by the imaginary part of the
exponential, that is a factor sin(w7(r)), vanishing for 7(r) = 0. The corresponding
factor in 2-D space is sin(wr(r) + 7/4), which can be obtained from (2.19) using the
approximation (2.19). The /4 phase shift is responsible for the local minimum across
the mathematical ray. Therefore, the counter-intuitive property holds that the greatest
effect on travel-time is not obtained by a point perturbation of the medium located
along the shortest-time path; moreover, in 3-D such a perturbation does not produce
any effect at all. This does not mean, however, that the wave carries no information
at all on the mathematical ray; it simply states. this holds for the time (or phase)
of signals. The information missing in time is carried by the wave amplitude, the
resolution function of which is nearly in quadrature with the corresponding one in
time. In this work, however, the investigation is restricted only to the phase of the
signal.

For bandlimited signals, the width of the raypath depends inversely on the width of
the frequency band and not on the central frequency®. The wider the band, the closer
the ray theory is approximated. Echoing the uncertainty relation At Aw = 2w, the
width of the bandlimited raypath, or bandlimited ray-width, can be computed from
the width of the main lobe of its envelope!® by

c e
Row = 20 (3o +1): (2.20)

where L is the source-receiver distance, instead of the well known formula express-

ing the Fresnel radius for a monochromatic field Rr = }4/(27c/w) L. The actual
source frequency content changes significantly the resolution patterns. In both 2-D
and 3-D spaces, accounting for a smoother spectrum, for instance the spectrum of a
Ricker wavelet, puts more emphasis on the central part of the spectrum rather than

on the extreme frequencies. This results in widening the main lobe, and damping ex-
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Fig. 2.  Cross-section through the origin of Rytov bandlimited raypaths, for a Ricker
wavelet spectrum and an “equivalent” spectrum with constant energy distribution. (a) 2-
D, and (b) 3-D. Geometry as in Figure 1. Vertical dashed lines indicate the bandlimited

raywidth, as computed by eq. (2.24).

ternal oscillations of the bandlimited raypath, which remains well bounded within the
bandlimited ray-width.

Figures 1 to 2 illustrates the previous discussion. Figure 1 shows an example of
2-D and 3-D bandlimited raypaths, for a signal characterized by a box-car spectrum
with a bandwidth of [0Hz, 200Hz]. Figure 2 shows their maximal transversal sections
(at the middle point between source and receiver) for a Ricker wavelet with a smooth
energy spectrum within [0Hz, 200Hz], and an “equivalent” wavelet with constant energy
distribution over a bandwidth of [65Hz, 135Hz]. For the raypaths of the Ricker wavelet,
it can be clearly appreciated: (i) the reduction of the external oscillations due to the
smooth frequency cut-off, (ii) and the modulating effect of the lowest frequency. The
good agreement of the curves within the bandlimited ray-width shows also that a sharp
frequency cut-off has effect mainly outside the bandlimited ray-width as a rippled
pattern, thus reflecting the well known Gibb’s phenomenon in time series analysis.

In the next session we simulate numerically a wave transmission experiment, to have
a confirmation of the analytical prediction and to evaluate how much resolution is lost
in both the 2-D and 3-D tomographic inversions of a 3-D experiment.

3. Numerical modeling

The Chebyshev spectral element method (SPEM) is a high-order finite element
technique, which solves the variational formulation of the differential equation. The
computational domain is decomposed into non-overlapping quadrilateral elements, and
then, on each element, the solution of the variational problem is expressed as a trun-
cated expansion of Chebyshev orthogonal polynomials, as in the spectral methods 8.
An investigation of SPEM and its application to the solution of both acoustic and elas-
tic wave equations has been described elsewhere 7*!°. Polynomial orders six or eight
are usually chosen. Time integration is performed by an implicit Newmark scheme,
also called the Constant Average Acceleration, which is a two-step algorithm, uncon-
ditionally stable and second-order accurate.

In the present work, the numerical simulations consist of a family of 2-D acoustic
models (Figure 3a) where a small velocity perturbation is located at half the source-
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Fig. 3. SPEM model. (a) Model description. (b) Pressure field at time ¢ = 0.184s for
the simulation pertinent to the source-receiver couple (57, R7). Letters indicate the main
wavefront (P), the scattered wave (P'), and the two second-order reflections from model

edges (I1).

receiver distance. In our experiments, we keep the perturbation fixed, and move the
source-receiver pair. The source-receiver distance is L = 519.2m, and the velocity of the
background medium is V' = 3000m/s. The source time history is a zero-phase Ricker
wavelet with a central frequency F. = 100Hz, and maximum frequency 2F, resulting
in a dominating wavelength A = 30m. The bandlimited ray-width of Ra, ~ 107Tm
was computed from equation (2.20) for an equivalent bandwidth of [35Hz, 65Hz]. The
numerical experiment consists of sixteen models, one for each offset. The perturba-
tion offset X with respect to the source-receiver axis ranges from 0 to 1.13 times the
bandlimited ray-width. The first two offsets are X0 = Om, and X1 = w/2 = 6.5m.
The others are equally spaced with increment AX = 8.21m, up to X15 = 121.4m. The
perturbation is a rectangle of size z x w = 138.4 x 13m?, and velocity V' = 3100m.
These values satisfy the weak scattering hypothesis.

The computational domain is decomposed into 17x 46 Chebyshev quadrangles of or-
der N = 6, for a total of 28531 nodes. The size of the typical elementis 16.24mx16.24m,
corresponding to G & 5.5 nodes per minimum wavelength. Radiating boundary condi-
tions are used at the four external edges of the computational domain, to avoid internal
reflections. At the two lateral boundaries (thick solid lines in Figure 3a), a six element
wide absorbing strip (shaded area) is defined, where the amplitude of the pressure
wavefield is gradually attenuated®. At the other two boundaries (thick dashed lines),
the non-reflecting Smith’s condition 2 is applied, according to which the wavefiled for
an unbounded medium can be exactly computed as the average of the two solutions
corresponding to Dirichlet (rigid boundary) and Neumann (free boundary) problems.
However, this technique cannot remove high-order reflections, that can be avoided only
by enlarging the computational model. In our case, we did find such spurious incoming
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Fig. 4. SPEM synthetics. (a) Response at first ten offsets (X0 to X9) for the perturbed
models (thin solid lines), and for the reference unperturbed model (thick dashed line). (b)
Pulse (I1). Cross marks and labels identify the points where the arrival time are estimated
for each offset.

waves (Il in Figure 3b), but only at late simulation times and always well distinct from
the primary wavefield at the receivers. The computational time step is At = 0.05ms;
it is much smaller than that required by the time integration scheme, but was chosen
to allow detection of arrival time changes due to the velocity perturbation. The total
time of simulation T' = 0.22s allows the most energetic part of the wave to reach the
receiver. Figure 3b shows a snapshot of the pressure field at time ¢ = 0.184s. The effec-
tiveness of the radiating boundaries conditions can be appreciated; in particular, the
second-order reflections are far enough from the primary wavefield at receiver position.

4. Numerical results and discussion

Figure 4a shows all the synthetic time histories at first ten offsets {Xi};=0,10, plus
the reference homogeneous model. Arrival times are estimated in two different ways:
i) in the time domain, by direct picking, and ii) in the frequency domain, with the
Fourier phase spectrum.

In the frequency domain approach, a frequency dependent time delay between two
seismograms, At(w), can be directly computed for each offset from their phase shift
Ad(w), by the following equation:

Ab(w) = Mg’l, (4.21)

where each phase is computed from the Fourier phase spectrum of the whole signal.
An example of the results obtained in our numerical experiments is given in Figure 5.
Time delays appear to be stable in a neighbourhood of the central frequency (100Hz)
and are highly variable in the high and low ends of the bandwidth. To determine
an overall time delay, we assume that each At(w) contributes to At with a weight
proportional to the energy carried by the corresponding frequency, then resulting in
the following equation:

Bi= [ " P(w) At(w) dw, (4.22)

where P(w) is the normalized power spectrum of the source. The effect of weighting
At(w) by P(w), and the resulting At is illustrated in the same figure. We can also
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Fig. 5. Frequency dependent time delay A#(w) (solid line) estimated from signal phase at
offsets X0 = Om (a), X7 = 55.2m (c), and X10 = 71.5m (d). The result of weighting At(w)
by the source power spectrum is shown by the dashed line; for graphical purposes, these
values are amplified by a factor 100. The resulting frequency independent time delay At is
marked by a cross placed at the central frequency (100Hz).

see that the same value At would have obtained by averaging values of At(w) on a
narrower band centered at the central frequency.

Equation (2.12) maps phase shifts into time delays, but gives no information on
which feature of the time history the delay concerns. In this respect, more insight
is obtained by estimating time arrivals from time histories. In the time domain, we
picked the extreme of the first four pulses, labelled | - IV in Fig. 4a. Figure 4b shows
the picking for the strongest pulse. The resulting four families of delays are displayed
in Fig. 6. For all of them, the delay at zero or small offsets is not the largest, as it
would be intuitively expected, but a local minimum. The third, more energetic pulse is
the one whose behaviour and values exactly conforms to Rytov’s theory: the greatest
time corresponds to a substantial offset. Numerical results suggest that the closer to
signal onset the arrival time is picked, the more the intuitive behaviour is satisfied, but
the corresponding delay value difforms from theory. In the case of a minimum-phase
wavelet, where energy is concentrated at signal onset, time delays estimated at the
first pulse would have presumably conformed to Rytov’s theory. Time picking method
comes out as a crucial matter, needing a deeper investigation.

Figure 7 compares the theorerical time delays to the time delays obtained from
SPEM synthetics. Comparing the numerical results we can argue that the time delay
i) is closely linked to the most energetic part of the time history, and ii) can be identified
with no ambiguity in the frequency domain by taking into account the spectral energy
of the signal. The good agreement betweeen numerical and theoretical values can be

b [y i
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4% 50 100 045 50 100 049 50 100 04 50
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Fig. 6. Time delays versus offset. Estimation is performed in the time domain, separately

for each pulse of the signal. Pulses are labeled according to Fig. 4a.
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Fig. 7. Time delays versus offset for the 2-D model. The figure compares the theoretic curve
(thick-dashed curve) with experimental values estimated in the time domain (circle marks
and thin solid line), and in the frequency domain (cross marks and thin dashed line).

appreciated, in particular the lower magnitude of the delays at offset zero.

5. Conclusion

We used 2-D SPEM modeling of the acoustic full wave equation to reproduce the
setting of a cross-well experiment with band-limited energy. We investigated in detail
how the scattered wavefield depends on the offset from the mathematical ray of a small
and localized velocity anomaly.

The dependence of time delays on offset conforms to the theoretical prediction if
the arrival time is picked at the strongest peak of the time history. This confirms
both the oscillatory character of the raypaths, and the paradox of the presence of a
minimum delay across the mathematical raypath: a velocity anomaly close to it can
be recovered only in part. The amount of information loss is greater in 3-D than in
2-D. Furthermore, information from single rays is ambiguous, since the time delay of a
positive anomaly can be accounted for by a negative anomaly placed in the minima of
the band-limited raypath. The effective resolution of a tomographic experiment with a
bandlimited signal is given by the bandlimited ray-width, this concept replacing that
of Fresnel radius valid for a monochromatic signal.

Our simulations with signals with a smooth energy spectrum shows that it is possible
to define an equivalent bandwidth, with constant spectral energy level therein, which
closely reproduces the band-limited raypath within the bandlimited Fresnel volume.
Outside this volume, signals with a smooth spectral energy distribution rapidly vanish,
whereas signals with sharp cut-offs show a slowly decaying ringing that closely reflects
the well known Gibb’s phenomenon.
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