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Abstract — This paper presents a system identification approach for the
accurate parametric modeling of both reflection and transmission
experiments performed on a linear homogeneous visco-elastic material at
normal incidence. The plane wave propagation model takes into account the
absorption and dispersion in the material as well as an analytic diffraction
correction for the beam spread. The proposed inverse procedure is based on
a maximum likelihood estimator, which is known to outperform most other
estimators especially when the input/output measurements are heavily
corrupted by noise. It is shown by means of a model validation that this
approach leads to accurate estimates of the absorption and dispersion.
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I. INTRODUCTION

Although different methods based on plane wave propagation models are
available for the determination of the absorption and dispersion in a visco-
elastic material at normal incidence [1], [2], [3], these methods do not allow a
study of the influence of possible model errors. However, the estimation of the
physical material properties from noisy reflection or transmission data is
strongly influenced by the validity of the used wave propagation models as
well as the applied estimation techniques. In this paper, a model validation is
carried out for a plane wave propagation model including an analytic
diffraction correction method. The inverse problem is solved by means of a
maximum likelihood approach, which is formulated in the framework of
frequency domain system identification [4]. In [4] the identification of
parametric models for transmission experiments was discussed. A similar
scheme is followed in this paper, consisting of the parametric modeling of the
experiments and the estimation of the parameters involved in the analytic
wave propagation model. The validity of the proposed model is demonstrated
by means of a comparison between the estimated absorption and dispersion
obtained with reflection and transmission data.

The parametric modeling of the reflection and transmission experiments
performed on a linear visco-elastic material (e.g. plexiglass) at normal
incidence is discussed in Section II. The modeling problem consists of two
parts: the modeling of the ultrasonic wave propagation in the visco-elastic
plate and the calibration of the measurement setup. An analytic plane wave
propagation model is used to describe the reflection and transmission
coefficients of a visco-elastic plate including the absorption and dispersion
effects. Although in a classical approach the presence of absorption and
dispersion in a visco-elastic material is described by models derived from a
nearly local form of the Kramers-Kronig relationship [5], [6], [7], a rational
transfer function model is used in this paper. This model choice is based on the
conclusions drawn in [4], where it was shown that rational transfer function
models result in broadband absorption-dispersion functions which describe
the ultrasonic wave propagation much better than the classical models.
Moreover, an analytic diffraction correction is introduced in the plane wave
model based on the method proposed in [8]. Next, the calibration of the
measurement setup is formulated for both the reflection and transmission
experiments. This calibration requires two additional experiments performed
on a reference system, from which a nonparametric estimate of the transfer
characteristics of the measurement setup in reflection and transmission can be
determined.

The calibration experiments together with the reflection or transmission
experiments performed on the visco-elastic plate are regarded as the inputs,
respectively, the outputs of a SISO (Single Input Single Output) system. This
allows the construction of a SISO maximum likelihood estimator (Section III).

An experimental comparison between the estimated model parameters as
well as their uncertainty obtained with the reflection and the transmission
identification approach is carried out for a plexiglass plate in Section IV.
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Special attention is paid to the analysis of the performed experiments and the
obtained measurement accuracy after calibration. Moreover, a comparison is
made between the estimated absorption and dispersion characteristics
obtained with the plane wave propagation model without and with diffraction
correction. Finally, the conclusions are drawn in Section V.

II. MODELING OF THE REFLECTION AND TRANSMISSION
EXPERIMENTS

In this section, the modeling of reflection and transmission experiments
performed at normal incidence on a visco-elastic plate immersed in water is
treated in the framework of a SISO representation for the system under
investigation. The measurement setup, the plane wave propagation model as
well as the diffraction correction, and the calibration of the experiments are
discussed separately in the following.

A. The measurement setup

In Fig. 1 the measurement setup for the reflection and transmission
experiments is depicted. The experiments are performed with a pulser-
receiver (Panametrics 5055PR) and broadband transducers (type Panametrics
V389 with a center frequency of 500 kHz, used frequency band [300 kHz, 700
kHz], element diameter 3.81 cm and near field distance in water 12.1 cm). The
acquisition of the reflection and transmission experiments is carried out using
a classical pulse as excitation signal in the monostatic (reflection) and bistatic
(transmission) mode, respectively. Consequently, the experiments are not
performed simultaneously. The position of the transducers is not altered when
switching from the monostatic to the bistatic measurement mode.

Since the inverse problem is based on a frequency domain maximum
likelihood estimator, the measurement setup is described in the frequency
domain too. The following notations are introduced: H , (@) for the emitter
amplifier, Hy, (w) and Hp, (@) for the emitter and receiver, respectively with
i=12, while H Ar((o) and H At(“)) represent the receiving amplifier
characteristics. The generated pulses X, () and X (@) (inputs) as well as
the reflected signal Y, (o) and the transmitted signal Y, (o) (outputs) are
digitized. The input and output measurement errors are represented by the
random v%riables ny{w) and ny (o), which have a frequency dependent
variance Gy, (@) and 6y.(w), respectively with (i = 7, t).

Introducing the transfer functions of the measurement setup in reflection

and transmission H, ys {w) and H Syst(u)), respectively, the following
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relationships are obtained in the frequency domain between the inputs and
outputs of the system under investigation:

Y, @) = Hyy (@) H (@) D) - X, (@) )

Y, (@) = (@) Hfw) - Djfw)- X () @)

syst
where H_(w) and H(w) represent, respectlvely, the plane wave propagation
models for reflection and transmission in the visco-elastic plate. Moreover, the
diffraction effects are taken into account by the introduction of the diffraction
correction factors D (co) and D ((n) for the reflection and transmission case,
respecnvely The analytlc expressmns for these correction factors are presented
in Section C. From (1) and (2) it can be readily seen that calibration of the
measurement setup, both for the reflection and transmission experiments,
requires the knowledge of H_ () and H_ (), respectively, given by:

syst syst
Hsysr(m) = H Tle(m) H Tlr(m) -H Ar(m) )
syst(m) Hepy e(a)) -H T2r(m) -H At(m) 4)

Note that using the emitter as the receiver and vice versa (i.e. replacing
subscript 1 by 2 and 2 by 1) affects the transfer functions (3) and (4), even in
the case that both transducers remain at the same position. The calibration
techniques for the reflection and transmission experiments are briefly
summarized in Section D. In the following section, the transfer function
models for the plane wave propagation are discussed.

B. The plane wave propagation model

The parametric modeling of the plane longitudinal wave propagation in a
single layered structure immersed in water is discussed for reflection and
transmission (Fig. 1). Assuming that the superposition principle is valid
(which will be experimentally verified in section IV), the broadband acoustic
excitation is decomposed into plane harmonic waves, while the material
under investigation is modelled in the framework of linear visco-elastic
theory.

Describing the absorption and dispersion in a linear visco-elastic
homogeneous material by means of a rational transfer function model, the
complex wave number K, (w) for the material under investigation is defined
as follows:

O]

K@) = 055 = oy @ ®)
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The complex velocity V,(®) depends on the dispersionless phase velocity
copg and the numerator and denominator coefficients o,, and B,
respectively, of the rational form. Without loss in generality, the wave
propagation in water is assumed to be lossless (no absorption and dispersion):

Kyylo) = == ©)
ow

Expressing the boundary conditions for the normal stress and
displacement at the 2 interfaces of the layered system shown in Fig. 1, the
wave propagation models in reflection and transmission H (w) and H/(w),
respectively, are given by [9]:

27K 2Ky 0)d
N@ g OB )

(10) |

— r —]
H® = 5@ D)
K@) (d, +d5) ~jKp@)d
N o) (1—1‘2 ((0))6] wlo) (d; + 3)e] ml@)d,
H(0) = —— = WM (11)
t D,(w) D(w)
These transfer function models have a common denominator given by:
2 -2jKylw)d
D@) = D) = Do) = L= @e (12)

Furthermore, the reflection coefficient at the boundary water-material can be
expressed as:

L= Z g Ppgl@,00B,0)

YWM((D) = (13)
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in which Z,,,, is defined as the ratio of the acoustic impedances of the
material un‘c/i/er investigation and water in the case no absorption and
dispersion would be present:

7o PrmCom
WM =
Pwlow

(14)

and where p;, and p,, denote respectively the density of water and of the
material under investigation.

Note that for physical reasons (stability and ¢ (), o () 20, V), constraints
are introduced on the numerator and denominator coefficients o, and B M7
respectively, of the rational form [4].

C. The analytic diffraction correction

In order to introduce the analytic diffraction correction in the reflection and
transmission coefficients of the plate, the closed form expression for the plane
wave reflection and transmission coefficients (10) and (11) are replaced by a
summation known as the Debye series expansion corresponding with the
multiple propagation paths in the layer [9]. Performing a summation over all
propagation paths, the respective reflection and transmission coefficients
Hp (w) and Hp, () corrected for diffraction effects are given by:

Hp (0) = D () - H /()
~2jKy(@)d - (15)
= ry@e we ‘(Dw(m)-(1-rV§M(co)) Y, Rn(co)]
n=1
Hp, (@) = Dyw)-H/w)
K@) (d; +d3) _j = 16
T ) PR ’KM(m)dZ( ) Tn<m>] 4o
n=0
where:
Loy —2jnKy(e)d
R (@) = D, (@) [rype] @2 g o a7
and:
T,(@) = Dyy@) - Iryppgn ¢ "M (s)

Note that the correction factors D, (®w) and D, (w) are introduced for each
propagation path through the plate for reflection and transmission,
respectively. By setting the correction factors equal to 1, the classical plane
wave reflection and transmission coefficients are generated again. In practice,
the infinite summations appearing in (15) and (16) are reduced to finite ones
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due to the presence of absorption in the material under investigation. The
expressions for the diffraction correction factors for reflection are given by [8]:

-iS
D, (@ = 1—¢  "[J(S,)+4(S,)] (19)

where the arguments:

s = muz
m 2d1c0w + 2nd2c0M

(20)

depend on the frequency independent phase velocities c,,, and c,,,, the
thickness of the plate d,, the distance d, (see Fig. 1) as well as on the radius a
of the used transducer. Similarly, the diffraction correction factors for the
transmission experiment are obtained as follows [8]:

48,0 + 1T4(5,,)] @)

D, () =1- —e
where the arguments:
2
S = wa (22)

tn (d,y;—dy) copy + (2n+ 1) dycoy,

depend also on the distance d ‘ot = d1 + d2 + d3 (see Fig. 1).

D. Calibration of the experiments

In general, the characteristic of the measurement setup is removed from
the experiments performed on the material under investigation using
additional measurement data. Thereto the material under investigation is
replaced by a reference system, for which the wave propagation can be
described by means of an analytic model, while the experimental conditions
(e.g. pulser-receiver configuration, positioning, temperature) are maintained.
In this section, the used calibration methods for the transmission and
reflection experiments are discussed by treating the modeling of the
calibration experiments in a similar way as the experiments performed on the
test sample. Use is made of the general assumption that water behaves lossless
in the frequency band of interest (300 upto 700 kHz).

Calibration experiment for transmission. The calibration of the
transmission experiments is elaborated as described in [4]. Removing the
material under investigation from the measurement setup depicted in Fig. 1,
the calibration experiment is performed without changing the pulser-receiver
settings nor the positioning of the transducers. Using relationship (2), the
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transfer function for the calibration experiment in transmission H cal t((o) can
be introduced as follows:

cult(m) = cult(w) Hsyst(w) ’ Hto(m) ) Xcult(m) 23)
c-alt(m) ) Xcult(w)
with:
—iK d
Hy @) = ¢ WO (24

Since it is assumed that water behaves lossless, the analytic model H (0))
describes simply the time delay correspondmg with the propagation dlstance
d,,, between the emitting and the receiving transducers. The diffraction
correction factor for the calibration experiment D _;,(w) equals [8]:

] calt

t(m) =1- []O(Scalt) + jll(scalt)] (25)

cal

where the argument S ,, now reduces to:

2
o)
S 5= (26)
T dyon
Calibration experiment for reflection. Returning to equation (1), the

calibration of the reflection experiments is modeled by means of the transfer
function H__, (®):

(0) =

calr

(W)-H__(0)-H (0)-X

Doy sysr ro calr

() -X_, (o)

calr

calr (@)

@7
culr

where H_ () represents the plane wave propagation model for the chosen
reference system and D_, (o) the diffraction correction factor. In the case
where a calibration experiment is performed on a material with well known
properties, the modeling of this calibration experiment is described using (1)
and (15) in analogy with the reflection experiment performed on the material
under investigation. In general, multiple reflections are created in the
calibration sample so that relationship (15) can not be simplified. However, in
the case the multiple reflections can be separated in the time domain, only the
first reflection can be used by applying appropriate windowing in the time
domain. Introducing the frequency dependent reflection coefficient
"wmol®@. P,) of the interface water-calibration sample, the plane wave
propagation model in calibration is given by:

~2jK ()
H, o(co) = e

cal

: TWM()(O), Po) (28)

where 7y, 0@, P ) is given by (13) and the vector P = {Z, 3,&0 B Mot
contains the model parameters of the calibration sample Agam, the fraction



183

correction factor for the calibration experiment in reflection is introduced as
follows [8]:

calr(w) =1l-e S [IO(Sculr)+j]1(Sculr)] (29)

where the argument:

2
wa
S = (30)
calr 2dt:alCOW
depends now on the distance d_; between the transducer and the calibration
sample.

Since this calibration approach requires the knowledge of P_ and since it is
anyway assumed that the first reflection can be separated in time domain from
the multiple reflections created in the calibration sample, an obvious and
optimal choice of a calibration sample is the material under investigation
itself. This choice is optimal with respect to the possible introduction of
systematic errors through the estimation of the model parameters P by
means of a transmission expenment Indeed, a transmission experlment
performed on the calibration sample is the only possibility to obtain these
parameters without a priori knowledge as can be concluded from (23) and
(24). Note that if the first reflection on the material under investigation is used
for calibration purposes, the following substitutions can be introduced in (28):

degr =3 Twmo = "wm €2y

Moreover, the diffraction correction factor D, (0)) as defined in (15) reduces to
‘D (m) calr(m)

Formulation of the calibration approach. In order to incorporate the
calibration procedures in the identification scheme, the transfer function
models derived for the calibration experiments (see (23) and (27)) are
combined with the models for the reflection and transmission experiments on
the material under investigation (see (1) and (2)). Elimination of the
characteristics of the measurement setup leads to:

Y, (w). . - (w)
mr _ ' _ calr
Y (o) 8 - (o)
mi _ ) - calt
e H,, () = Hp®)  H (@) = Hp @) 5 X_ (@ (33)
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where H py(@) and Hp(w) are defined as follows:

~ HD ((0) 2 =
Hp () = W = 1- (1-ryy () E,an(m) (34)
- Hp (o) o TRy, Ky,
Fpy@) = ﬁ_’:;(_m) = (1=rlan e WO (Z Tn(m)J 35)
n=0

In m@}l) and (35), the diffraction correction factors D m(m) and Dtn(“))' as
defined in (19) and (21), are replaced by:

D tn(m)

By@) = o and B
n(®) = =——— and Dy, (w) _'m

(36)
D calr(w)

Finally, the arguments of the exponential functions appearing in (34) and (35)
are written in the form:

K. (0)d % d K, (o)d @y (37)
w 2 COW T M 2 P (m,»aM’B )

where the delay 1 only occurs for the transmission model and originates
from the difference in propagation time during the calibration and the
transmission experiment, while t,, represents the propagation time of the
material under investigation. The common model parameters for the
reflection and transmission modeling, which are purely related to the material
under investigation, are summarized as follows: the propagation time 1, ,, the
ratio of the acoustic impedances Z,,,, and the numerator and denominator
coefficients o, , and B, ,, respectiveY}vr, of the rational form. Assuming that the
density py, and the phase velocity c,, of water are known, the physical
parameters of the material under investigation are easily derived from the
introduced independent mode! parameters P = { Ty Tap 2 W % B Mt [4].
In the next section the estimation of the model parameters P from the noisy
experiments is elaborated in the framework of a ML approach.

Since the calibrated reflection and transmission models defined in (33) and
(34) relate transfer functions, special care should be taken to the
nonparametric estimation of these transfer functions from the noisy input-
output measurements. Clearly, stochastic as well as systematic errors should
be minimized in order to obtain ‘good’ estimates for the model parameters.
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III. THE ESTIMATION OF THE MODEL PARAMETERS

The estimation of the model parameters P is elaborated using a Maximum
Likelihood (ML) approach for SISO systems (reflection or transmission data).
In [11] the identification of transfer function models for linear SISO systems is
treated in ML sense. A similar approach was followed for the identification of
parametric models for transmission experiments [4]. In this section, a brief
overview of the SISO identification approach is given.

The MLE for linear SISO systems constructed in [10], [11] requires the
measured input and output spectra of the system under investigation as well
as the knowledge of the perturbing noise variances. Furthermore, the noise
sources are assumed to be zero mean complex normally distributed. In the
case the measured spectra of input and output are obtained using a Discrete
Fourier Transform this assumption is asymptotically valid [12]. Although, the
MLE presented here for the reflection or transmission models (33) and (34)
combines the calibration of the measurement setup as well as the transmission
or reflection experiments on the material under investigation, the basic
assumptions necessary for the ML approach are still valid in this case [4].

Introducing the nonparametric estimates H' (0) (the suffix j equals
respectively calr, calt for the calibration experi’ments and mr, mt for the
reflection or transmission experiments with test sample), the equations (33)
and (34) can be transformed in a SISO representation of a linear system:

H (0) = Apfw,P)-H.f () (38)
HP (@) = Hpw,P) -H)\ (0) (39)

The SISO  parameter Vef:tors Pr = {’CM, ZWM’ Oy BM} and
P, = {"CT,’C M Zwne % BM} are introduced for the sake of convenience. The
nonparametric estimates occurring in (39) and (39) are obtained from
averaging the input-output measurements during the calibration experiments
and the reflection and transmission experiments [4]. During the averaging
procedure the variances on the nonparametric estimates o}, (w) are
determined as well. Due to the high signal-to-noise ratio of the input and
output spectra (typically 40 dB), the H,,; estimates will be almost complex
normally distributed, so that also the assumptions required by the MLE are
well fulfilled. Taking into account these considerations, the ML cost functions
C,, C, to be minimized for the SISO system are given by [4]:

L
2 .
C{P) = Y |e;j(w, Py|” with i = r,¢ (40)
' I=1
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where
X_ (o) -H,P)-Y_ ()
e(apP) = =Lt I with i = 1.t @1)
5% (@) -|H@, P+ 6}, (@)
and:
V. (@,P) = o ffw, P)| + 0 42
(@ P) = O (@) |0, P)| +0,m (@) 42)

where {w,] =1,...,L} denotes the set of angular frequencies taken into
account. Tf\e nonparametric estimates-of the inputs and the outputs as well as
their variances are determined at each spectral line I as explained before.
Fmally, H o, P) (i = r,t) represent the transfer function models as defined
in (34) and (35) respectively, evaluated at the I-th spectral line. Relationship
(40) results in a nonlinear minimization problem. The Levenberg-Marquardt
minimization algorithm is used because of it's convergence properties [15].

The inverse procedure is initialized for the plane wave propagation model
(i.e. with Dm(o)) =1 and Dtn((o) = 1). The initial parameter values for the
model parameters P are obtained from the physical parameters of the material
(thickness of the specimen, density, and dispersionless phase velocity)
determined from basic experiments. Initial values for the numerator and
denominator coefficients of the rational transfer function are not available.
However, this problem is solved by starting the estimation only with a first
order model (n=1,d=0) or (n=0,d=1), and selecting a very small
parameter value [4]. After minimizing (40), the model order is gradually
increased and the previously obtained estimation results are used as initial
parameter values, while the new added coefficient again is chosen very small.
Since the initial parameter values of the other parameters are determined
within a measurement accuracy of 10%, the minimization does not suffer from
the presence of local minima. The next step in the estimation scheme consists
of introducing the diffraction correction factors calculated from the estimates
of P obtained with the plane wave propagation model. Since the correction
factors (see (20), (22), (26) and (30)) depend on the radius of the transducer a4
(provided by the manufacturer), the phase velocity in water ¢, (assumed to
be known given the temperature [14]), the distances d; and d, ,, and finally
the thickness of the plate d, and the phase velocity ¢ M’ it is expected that the
correction factors D,,(®) and D,,(®) can be calculated accurately from the
previously obtained estimates of P with the plane wave model. Note that the
followed procedure can be applied iteratively in order to increase the accuracy
of the introduced correction factors.

IV. THE EXPERIMENTAL RESULTS AND DISCUSSION

The experimental results presented in this section are obtained from
reflection and transmission experiments performed on a plexiglass plate. The
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reflection experiments are calibrated using the first reflection on the plexiglass
plate as explained in Section II.C. A comparison is made between the
estimated absorption and dispersion properties of the plexiglass resulting
from the SISO estimations obtained with the plane wave propagation model
without and with diffraction correction.

The identification scheme presented in Section III is applied to the
reflection and transmission experiments. Firstly, the model order selection is
carried out using the plane wave propagation model without diffraction
correction. In Table I, the material properties of plexiglass are summarized
which are used as initial values for the estimations. From the cost function
values presented in Table II, it is concluded that for the SISO reflection as well
as the SISO transmission case the (n=2,d =1) model order should be
preferred. Indeed, a significant decrease of the cost function values is observed
in comparison with the (n =1,d = 1) model order. A further increase of the
model order to (n =2,d =2) resulted in the same cost function as obtained
for the (n=2,d=1) model order. Next, the diffraction correction is
introduced and the model order selection is repeated. Again, the
(n=2,d=1) model is selected. From Table II it also follows that the cost
function values obtained for the model with diffraction correction are smaller
than those obtained with the plane wave model. In Figs. 2 and 3 the quality of
the SISO estimation results for transmission and reflection, respectively, are
illustrated for the (n =2,d = 1) model with diffraction correction. Although
no systematic errors are observable from the magnitude and phase differences
(Fig. 2(c), (d) and Fig. 3(c), (d)) for model order (n =2,d =1), a comparison
between the value of the experimental cost functions (C = 965 and
C ;= 2002 ) and the theoretical ones (C ,=C, = 163; with L = 166 and where
Ny = 5 and n, = 6 represent the number of parameters to be estimated in
rdflection and transmission, respectively [15]) leads to the conclusion that still
small model errors are present. The estimated parameters as well as their
uncertainty are given in Table IV and IV for the plane wave propagation
model without and with diffraction correction, respectively. From these
estimation results, it is concluded that the difference between the estimated
model parameters obtained from the transmission and reflection case,
respectively, is significantly smaller for the plane wave model including
diffraction correction as compared to the model without diffraction correction.
Although, the estimates cannot be considered equal within their uncertainty, it
is concluded that only small model errors are present.

The physical relevance of the introduced diffraction correction is illustrated
by comparing the estimated absorption and dispersion characteristics
obtained with the plane wave propagation model without and with diffraction
correction (Figs. 4 and 5). It is readily observed that without diffraction
correction, the estimated absorption and dispersion are over-estimated, and
that the reflection and transmission estimates lead to different characteristics.
This is explained by the difference in calibration for both types of experiments,
which results in a different contribution of the beam spread on the estimates.
Introducing the diffraction correction, however, shows that a very good
agreement exists between the reflection and transmission estimates of the
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absorption and dispersion. This result confirms the validity of the model
including the diffraction correction.

Finally, the estimations are repeated by introducing the diffraction
correction factors calculated from the previously obtained estimates. After
convergence, this results in cost function values which are almost identical as
those shown in Table II (< 1% of difference). It follows that the correction
factors are not sensitive to the variations in the parameters P_ and P, with
respect to their initial values obtained with the plane wave model.

V. CONCLUSIONS

In this paper, a frequency domain identification approach is presented for
reflection and transmission experiments performed on linear visco-elastic
materials at normal incidence. Maximum likelihood estimators are developed
for the estimation of the model parameters from noisy reflecion and
transmission data. The ultrasonic wave propagation is modelled by means of a
plane wave theory without and with diffraction correction. For both models,
the absorption and dispersion in the material under investigation is described
using a rational transfer function model. Furthermore, special attention is paid
to incorporate the calibration of the measurement setup in the identification
scheme.

It is demonstrated that applying the presented approach to reflection and
transmission experiments performed on a plexiglass plate, leads to the same
model orders for the rational transfer function model for both wave
propagation models. However, only the model including diffraction correction
results in absorption and dispersion characteristics in very good agreement for
the SISO reflection and SISO transmission estimations. These estimation
results confirm the validity of the wave propagation model including the
absorption and dispersion (rational transfer function model) as well as the
analytic diffraction correction.
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FIGURE 1: The measurement setup for the reflection experiment (monostatic
mode) and the transmission experiment (bistatic mode).
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FIGURE 2: SISO estimation results in transmission for plexiglass.
(a) The magnitude of the measured (m) and estimated (—) transfer function.
(b) The phase of the measured (m) and estimated (—) transfer function. (c) The
magnitude difference between the estimated and measured transfer function
(m). (d) The phase difference between the estimated and measured transfer

function (m).
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FIGURE 3: SISO estimation results in reflection for plexiglass.
(a) The magnitude of the measured (m) and estimated (—) transfer function.
(b) The phase of the measured (m) and estimated (—) transfer function. (c) The
magnitude difference between the estimated and measured transfer function
(m). (d) The phase difference between the estimated and measured transfer
function (m).
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FIGURE 5: Comparison between the estimated dispersion obtained with:
plane wave propagation model in reflection (thick dashed line) and in
transmission (thick line), plane wave model with diffraction correction in
reflection (thin dashed line) and in transmission (thin line) (model order of
the rational form (n=2,d = 1)).
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TABLE I Material properties: Sample thickness, dilatational and shear
velocity at 500kHz and the density.

sample dilatational shear density
material thickness velocity velocity
(m) (ms_l) (msul) (kgm_3)
plexi 0.021 2700 1400 1200

TABLE II: Overview of the cost function values obtained for different model

orders.
plane wave model without diffracﬁon with diffraction correction
correction
model order 1-1 1-1 2-1
SISO reflection 1927 1534 965
SISO transmission 6310 4006 2002

V TABLE II: Estimated parameters and uncertainti (68% confidence) for

plexiglass obtained with the SISO approach for t

e plane wave model

without diffraction correction.

P, P,
Ty (8) 7.312e-6 7.2582e-6
(0.003e-6) (0.0007e-6)
T (8) — 1.30436e-5
(0.00002¢-5)
ZyM 2,131 2.079
(0.005) (0.001)
oy 10.4e-7 7.72e-7
(0.1e-7) (0.05e-7)
a, 1.21e-15 8.2e-16
(0.03e-15) (0.1e-16)
By 9.9e-7 7.41e-7
(0.2e-7) (0.04e-7)




TABLE IV: Estimated parameters and uncertainty (68% confidence) for
plexiglass obtained with the SISO approach with diffraction correction.

P, P,
Ty (5) 7.223e-6 7.2213e-6
(0.001e-6) (0.0005e-6)
Tr (8) — 1.30477¢-5
(0.00002¢-5)
Zym 2.157 2.126
(0.005) (0.001)
0y 6.0e-7 5.33e-7
(0.1e-7) (0.03e-7)
0y 6.8e-16 4.82e-16
(0.3e-16) (0.09¢-16)
B, 5.8¢-7 5.18e-7
(0.1e-7) (0.03e-7)
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