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Abstract: A method is presented to construct the transient acoustic pressure in a borehole due
to the action of a volume injection source in another borehole in a typical cross-well seismic setting
with a horizontally stratified anisotropic solid formation. The elastic wave motion in the formation
is considered to be generated by distributed surface sources. Via an appropriate combination of
a Laplace transformation with respect to time and Fourier transformations with respect to the
horizontal coordinates, a matrix differential equation for the spectral acoustic state quantities is
obtained. A so-called splitting matrix is introduced to decompose the spectral down- and up-going
wavefield constituents. The generalized-ray constituents, representing the wave constituents that
have undergone successive reflections and transmissions at the interfaces, are transforméd back
to the space-time domain with the aid of the modified Cagniard method. At the relatively low
frequencies involved, the acoustic wave motion inside a fluid-filled borehole, is dominated by tube
waves. The excitation and propagation properties of the tube wave are modeled by regarding
the borehole as an acoustic waveguide with a compliant inner wall. The corresponding elastic
wavefield quantities at the borehole wall serve as distributed surface sources that generate the
elastic wave motion in the formation. The acoustic pressure on the axis of the receiving borehole
is evaluated through a suitable application of the fluid/solid acoustic reciprocity theorem. Several
of the physical phenomena described by the resulting expressions, are illustrated via numerical
simulations.

1. INTRODUCTION

Acoustic signals, as measured in cross-hole seismic experiments involving volume injection
sources and acoustic pressure receivers, contain strong tube-wave related phenomena. This was
first recognized by White and Sengbush {1]. Of late, Dong and Toksdz [2] have analyzed a real
cross-well data set, showing that most of the strong events in the data can only be explained
if both the transmitting and the receiving holes are incorporated in the model. In particular,
converted waves can be stronger than the primaries. Further, on account of recent measurements,
the current opinion is that anisotropy should be included in the model.

To model the acoustic wave motion inside a fluid-filled borehole, the acoustic radiation em-
anating from such a borehole and the full cross-hole transfer of acoustic signals, a wide variety
of modeling methods has been employed. Here, we mention the far-field asymptotic methods
to determine the wavefield radiated into the formation — Lee and Balch [3] and Meredith [4];
the equivalent seismic source methods to determine the wavefield radiated into the formation —
Kurkjian et al. [5]; the finite difference methods — Track and Daube[6]; and the hybrid space-time-
domain methods, in which the final expression is assembled out of the solutions to subproblems
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obtained by different techniques — White and Sengbush [1], Burridge et al. [7] De Hoop et al. [8]
and Dong and Toksdz [2]. We refer to the De Hoop et al. [8] for a more detailed description of
the literature.

In this paper, we present a method by which the transfer of transient tube-wave signals in
cross-hole experiments can completely be calculated within a specified time window of observation.
The major part of the analysis is performed in the spectral domain via an appropriate combination
of a Laplace transformation with respect to time and Fourier transformations with respect to the
horizontal spatia} coordinates. The spectral domain solution is constructed in terms of generalized
rays.

The analysis involves the following consecutive steps. First, we consider the spectral-domain
down- and upward propagating wavefield quantities within a homogeneous anisotropic layer in
the formation and their excitation by distributed borehole surface sources. We use the scattering
matrix formalism to describe the interaction of the down- and up-going waves at the interfaces
between two consecutive layers. Next, we employ a small parameter analysis to describe the
low-frequency tube-wave motion in the borehole fluid, hereby addressing its dependence on the
radial stiffness of the compliant inner borehole wall, its excitation by a point source of volume
injection, and the influence of the presence of a concentric shell structure surrounding the bore-
hole fluid on the radial stiffness of the inner wall and on the resulting wavefield quantities at the
outer wall that determine the spectral-domain surface sources. Subsequently, we discuss how to
apply a fluid /solid reciprocity theorem to express the spectral-domain received acoustic pressure
in terms of the surface sources of the elastic wavefield incident on the receiving borehole and
the surface sources of the applied auxiliary state. Next, we describe an alternative implementa-
tion of the modified Cagniard method, by which the transformation from the spectral domain to
the space-time domain is carried out, yielding the desired transient cross-hole acoustic pressure
Green’s functions. Finally, the results of numerical simulations are used to illustrate the physical
phenomena described by the method. We conclude with a discussion about the ramifications of
the presented theory and results.

2. DESCRIPTION OF THE CONFIGURATION

We investigate theoretically the transient cross-hole signal transfer in a configuration consist-
ing of two vertical, circularly cylindrical, fluid-filled boreholes embedded in a perfectly elastic,
horizontally stratified, anisotropic solid formation. To specify the position in the configuration,
we employ the coordinates {z;,zq, 73} with respect to a fixed, orthogonal, Cartesian frame of
reference, with the origin © and the three mutually perpendicular base vectors {iy,iz,1a} of unit
length each. In the indicated order, the base vectors form a right-handed system. In accord-
ance with the geophysical convention, i3 points vertically downwards. The subscript notation for
Cartesian vectors and tensors is used. Lowercase Latin subscripts are used for this purpose; they
are to be assigned the values 1, 2 and 3. Lowercase Greek subscripts are used to indicate the
horizontal components of the Cartesian vectors and tensors; they are to be assigned the values
1 and 2. For the vertical component the subscript 3 is then written explicitly. To all repeated
subscripts, the summation convention applies. Whenever appropriate, the position is also specified
by the position vector x = z,i,. The time coordinate is denoted by ¢. Partial differentiation with
respect to z, is denoted by 8,, whereas 0; is a reserved symbol denoting partial differentiation
with respect to time. In addition to using Cartesian vectors and tensors, we employ a matrix
notation, in which we denote 6 by 6 matrices by capital sans serif characters, 3 by 3 submatrices
of such matrices by plain capital characters, 6-vectors by lowercase boldface sans serif characters
and 3-vectors by plain lowercase boldface characters, respectively. To evaluate the elastoacoustic
radiation emanating from the source hole, we initially neglect the presence of the receiving hole.
The support of the anisotropic solid formation is a connected open set of points represented by



199

i | s St(ations)

Figure 1: The illustration on the left shows a possible configuration; the illustration on the right
shows the shell structure of a fluid-filled borehole.

the symbol D. The closure of D constitutes the boundary of the formation, i.e., the outer wall
of the vertical, circularly cylindrical, borehole and is denoted as 8B*. The symbol v is used to
denote the unit vector oriented along the inward normal to the boundary, i.e., into the formation.
The solid configuration consists of a stack of plane layers with different anisotropic elastic ma-
terial properties. These layers are assumed to be in rigid contact. The interfaces between the
formation layers are located on the vertical levels z3 = z3,7 with J = 0,1,..., M and T3 = 00.
The configuration may be bounded from above by a free surface, in which case T3, is used to
indicate the corresponding vertical level. Otherwise, we take z39 = —co. Further, the interval
Zy = (z3;7-1,23,7) With J = 1,2,... denotes an open subset of the z3-axis, while the open sub-
domain Dy of D is defined as Dy = {x|x € D and z3 € Z;} The horizontal surface § = S (z3),
represents the cross-section of the domain D and the horizontal plane at the vertical level z3
with z3 # z3,7. Accordingly, the closure 8S of S is the circle of intersection of the pertaining
horizontal plane and the boundary 8B* of D. At the instant t = 0 a point source of volume
injection, located at x = x5 on the axis of the source borehole, starts to generate the acoustic
wave motion, which is initially at rest. An acoustic pressure point receiver located at x = x® on
the axis of the receiving borehole measures the transferred acoustic signal. The domain occupied
by the fluid column inside a borehole is denoted as B~, while 5~ and Q~ denote the pertaining
radius and cross-sectional area, respectively. In between the fluid columns and the solid forma-
tion a finite system of concentric circularly cylindrical shells, representing casing, cementing, etc,
may be present. The domain occupied by a borehole, including these shells, is denoted as B,
while b+ and Q* denote the pertaining radius and cross-sectional area, respectively. The different
layers in the shell structure are assumed to be in rigid contact with one another and with the
solid formation. The fluid/solid interface in a borehole is denoted as B8~. Whenever we have to
distinguish between the source and receiving holes, we add the superscripts S and R to pertaining
quantities. We have depicted a possible configuration in Figure 1.
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3. THE ELASTIC WAVE MOTION IN A STRATIFIED ANISOTROPIC FORM-
ATION

Below, we investigate the elastic wave motion in a general anisotropic, homogeneous and
lossless subdomain Dy, constituting a horizontal layer from which vertical circular cylindrical
source hole is excluded, while the receiving hole is considered to be absent. We assume that the
medium that occupies this subdomain of the configuration is initially at rest. In the absence of
volume sources, the equation of motion and the deformation rate equation describing the elastic
wave motion in a homogeneous solid domain are given by (cf. Van der Hijden [9])

~DkmpgOm Tpg + pip0ivp = 0, (1a)
AijpgOqVp — SijpgBiTpg = 0, (1b)

where T, is the dynamic stress (Pa), vy is the partlcle velocity (m/s), pkp is the volume density of
mass (kg/m3) and g;jp, is the compliance (Pa™!), respectively. Further, Aijp, = 4(8ipjq + 8ig0jp)
is the completely symmetric unit tensor of the rank 4 and 8;, is the Kronecker unit tensor of the
rank 2. The compliance is the inverse of the stiffness cgm; (Pa), i-e., CkmijSijpg = Dkmpg. We
require both the volume density of kinetic energy and the volume density of strain energy to be
positive for a non-vanishing acoustic field. Hence, we demand that the inequalities pryara, > 0,
Ckmijbkmbi; > 0 and Gijpgbijbpg > 0 hold for all real non-vanishing vectors ax and symmetric
tensors bgn,, respectively. Further, we confine ourselves to reciprocal media entailing that pg, =
Ppky Ckmij = Cmkij = Cijmk and Sijpg = Sjipg = Spggis respectively.

Our method of analysis involves the use of a unilateral Laplace transformation with respect
to time and a Fourier transformation of the Radon type with respect to the spatial coordinates
over a horizontal surface S with a circular boundary 8S. For any wavefield quantity ¥ and for
any such horizontal surface, we have

oo
V(zg, s) = / exp(—st)¥U(zg,t)dt and U(ay,z3,s) = / exp(isarz)) ¥ (zm, s) A, (2)
$=0" T €S

in which s is taken real and positive so as to ensure causality, while a,, € R?. Then, for vanishing
initial conditions, we have §; — s and

/ exp(isa,\:u)‘)am\il dX = ——z’sa,‘ém,‘\il + 6,300 — / ¥ exp(isarzy)Vubmudl,  (3)
€S z,€08

in which ¥ = v,ix denotes the (in-plane) unit vector oriented along the énward normal to S and
we have used Gauss’ theorem. As § is considered to be an open set, we inversely have

2 ~
U(zg,s) = (%) / exp(—isanzy)¥(oy, 23, s) dX. 4)
a,€R?

Upon applying the Laplace and Fourier transformations to Eq. (1), we arrive at

~ . ~ ~ FoB+
~030k3pgTpg + 5Bkupgi@uTpg + SPkplp = fi (5a)
. . - +
Ajp303Tp — SAijputaubp — SSijpgTpg = AupqhaB . (5b)
in which
+ . - 168+ . N
5 = exp(isoazy) AgupgTpeu df, and k77 = f exp(i80)T) AijpgUpVyudgyu d€

T, €8S z,€8S8
(6)
are the spectral-domain boundary-surface-force source and boundary-surface source of deforma-
tion rate, respectively. As the state quantities in Eq. (5), we take the spectral acoustic particle
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velocity 7, and the spectral acoustic vertical traction tx = Agapy7pg. These state quantities are
continuous across a horizontal source-free interface. Upon eliminating the in-plane components
of the acoustic stress, we obtain the following coupled system of first-order ordinary differential
equations

0sf + sAf = &, (7)

where f and A denote the acoustic-field 6-vector and the § by 6 system’s matrix, which have the

following structure :
S A An A
f= ( —i‘: ) and ( A21 1‘-1'22 ) y (8)

in which ¥ and £ are the vector representations for the acoustic particle velocity and the acoustic
traction, while the components of the 3 by 3 submatrices of the system’s matrix are given by

>l

(A1)ip = —(caa)i cusprion, (Ar2)ip = (A1)pi = (ca3)5) (92)
(AZl)ip = (A~21)pi = kipprouay + pip, ("12 )ip = ‘wucwﬁi(cw)gpla (9b)
in which
(c-3~3);'7¢10k3j3 = Sij and kimpq = Cimpg — ciij(c-B-S);klclcSpq, (10)
respectively. In Eq. (7), we have further introduced the in-layer notional source vector
hY Y= Loy h
A a
n Al = fi+iaukiphp,.

To solve Eq. (7) we first write f = CW, where W is called the wavevector and C is a nonsingular
transformation matrix. Note that this relation is usually referred to as the composition relation
and accordingly C is referred to as the composition matrix. Choosing C to be independent of z3,
we substitute f = CW into Eq. (7) and subsequently carry out the substitution

AC = (T, (12)
after which we multiply the result on the left by the decomposition matrix D = C~1, so as to
arrive at B

OsW + sl = &, (13)

where we have introduced the so-called in-layer excitation vector & = Dii. Now, observe that
Eq. (13) comprises a decoupled system of six first order differential equations, provided that [ is
a diagonal matrix. But if we require that [ is a diagonal matrix, then Eq. (12) must denote an
eigenvalue problem and A must be a simple matrix. Moreover, the columns of C are eigencolumns
of A and the assumption that C may be chosen independent of z3 within the interval Z; is justified,
since the system’s matrix A itself is independent of z3 in this interval.

Before we can explore the structure of the composition matrix, we have to investigate the
structure of the system’s matrix as given by Egs. (8)-(9). First, for a,, € R?, the system’s matrix
is Hamiltonian, i.e.,

A, B AR An A ApE-Af (14)

where the superscript H denotes the operation of Hermitean transposition. Secondly, the matrix
Ay, is positive definite, while for a, € R? the matrix Ag; is positive definite as well. Thirdly, for
the reciprocal media under consideration, the system’s matrix is K-symmetric, i.e.,

A & AL, Ay LS AL Ap & A%y, (15)

where the superscript T' denotes the operation of transposition.
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In view of the first two properties of the system’s matrix, its eigenvalues 7(i)» which represent
the vertical slownesses, may be classified and arranged in 3 by 3 matrices according to

= diag(v(1),7(2)7(3))» With Re(y(3)) > Re(7(2)) 2 Re(v(y) > 0, (16a)
I'™ = diag(v(4), 7(5)1 7(6))y  With Yus) = —(7())" for i=1,2,3, (16b)

where the superscript * denotes the operation of complex conjugation. Consequently, we rewrite
the eigenvalue matrix, the wavevector and the in-layer excitation vector in terms of 3 by 3 matrices
and 3-vectors according to

= I+ o _ Wt . (&t
r=(0 f“)’ w=(v.v__> and e=(é_), (17)
respectively.

As a result of all three properties of A mentioned above, the composition matrix may always
be cast in the following form

(£ ) (% 2) w

where E denotes the 3 by 3 identity matrix, while Z*+ and Z~ denote the impedance matrices for
the down- and up-going wave motion, respectively. Moreover, Z~ = -—(Z‘*) , while for @, € R?,
the matrices Z+ and —Z~ are Hermitean positive definite. Further, the 3 by 3 par‘mcle-velocxty
matrices V+ and V- follow from the one-way eigenrelations

AXVE = VEE  with A* = Ay + A, 2% (19)

and they are related through V- (zayu) = V"'(oz#) Upon choosing the so-called power-flux
normalization, we have (V=)T(Z + ZT)Vi

It can be shown that the impedance matnces satisfy matrix algebraic Riccati equations, which
can be solved by first solving the eigenrelation given by Eq. (12). There is an analytic alternative
to this, which enables us to derive important properties of the pertaining quantities without having
to solve the corresponding eigenvalue problem explicitly. To this end, we introduce the splitting
matrix according to

B(a,) = % /L [—iasE + A(a,)] ™ das = I+ — fi-, (20)

in which f1* and 1~ are the orthogonal projectors onto the invariant subspaces associated with
the eigenvalues of A with a positive and negative real part, respectively, while the contour £
represents any contour that can be obtained via a continuous deformation — preserving the
direction of integration — of the real as-axis within the domain where the integrand is analytic,
provided that the resulting integral comprises a principal-value integral at infinity. From this
integral representation, it follows that the splitting matrix inherits the symmetry properties of the
system’s matrix. In particular B is both Hamiltonian and K-symmetric, while the off-diagonal
submatrices Bm and By are positive definite for o, € R% Further, it can be shown that B
commutes with A, that 1 and —1 are the threefold eigenvalues of B and that B is simple regardless
of whether A is sxmple or not. Most importantly, the impedance matrices follow from

% = (Byg) Y (+E - Byy). (21)

The splitting matrixis closely related to the Barnett-Lothe tensor which has proven to be extremely
useful in the analysis of surface waves (cf. Chadwick and Smith [10}).
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With reference to Eqs. (13) and (17) the solution to the uncoupled system of six first-order
differential equations for z3 € Zy = (z3,7-1, ¢3,7) is found to be

T3

Wt (z3) = exp[—s(z3 — 3,7-1) T T]W T + exp[-s(zz — z4)T+)&t (z5) dafy, (222)
Th=C3;7-1
- T3;J -
W~ (z3) = exp[—s(z3 — z3,7)[T]Wy — / ) exp[—s(z3 — z§)["]e™ (z3) dz§, (22b)
$é=1‘3
in which
W= lim W%(z3) and W7 = lim W (z3) (23)
23z, -1 zgtrs, s

denote the vectorial wave amplitudes of the pertaining wavevectors, respectively. From Eqgs. (16)
and (22), we infer that the wavevector, thus constructed, remains finite in the limit of s approaching
infinity, thus ensuring the causality of the corresponding space-time-domain quantities. Hence,
w*t and W™ represent the wavevector constituents associated with the down- and up-going wave
motion, while 8% and &~ represent the in-layer excitation-vector constituents that excite down-
and up-going wave constituents, respectively.

To obtain a causal description of the interaction of the space-time-domain wavefield quantities
at either side of a horizontal interface, the scattering formalism is ideally suited. To describe the
scattering formalism, let us define the modified vectorial wave amplitudes by

v 4 — . ~ W — l' - .
w3 z3111~rzr31;1w (z3) and W3 zsiéng_lw (z3) (24)

In terms of the quantities defined above, the scattering of the waves at the interface located at the
vertical level z3 = 23,7 is described by

ot e GH- Gt
Wini \ _¢&_ | Win : & _ €J '€J
( w3 > =Sy ( v\,‘% ) with Sy= ( S;;_ S;H' ) , (25)

in which the scattering matrix Sy pertaining to the level z3 = 23,7 may be expressed in terms of
the impedance matrices and the particle-velocity matrices according to

;= Vo™ 0 (_ZJ+1 +~Z§)_1 (~Z§ - Z.:‘;-H) (~ZJ+1 +~Z~}’)_l(~ZJ + sz:)
O (V.;_)-l (Zys1 + Z;)_I(ZJ+1 + Z.:;‘+1) (Zr1 + Z:';)"1 (Zy41 = Z3)

Vi, O
R (26)
o v

At a free surface bounding the configuration from above, we simply have

un

w} = = (V)BT EVOw + () e, ()

where the notional source term njj accounts for the action of a force source at the free surface.

4. THE RADIATION FROM A BOREHOLE

To determine the radiation emanating from a fluid-filled cased borehole, we employ a small
parameter analysis. Such an analysis has previously been employed by Burridge et al. [7] to
investigate the wavefield radiated into an arbitrary anisotropic homogeneous formation from an
uncased hole. For brevity, we restrict ourselves to discussing the analysis pertaining to trans-
versely isotropic media with a preferred direction along the vertical (TIV media).
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The linearized equation of motion and the deformation rate equation governing the acoustic
wave motion in the borehole fluid in the presence of a point source of volume injection at @, = x5,
are given by

O + ptywy, = 0, (28a)
Owy + kL0p = Q(t)6(em — z5), (28b)

in which p is the acoustic pressure (Pa), wp, is the particle velocity (m/s) in the fluid, pf is the
fluid volume density of mass (kg/m?), sf is the fluid compressibility (Pa~!) and Q = Q(¢) is the
time-rate of volume injection (m3s~') of the point source. Further it is convenient to employ the
generalized Hooke’s law instead of the deformation rate equation in the solid, i.e.,

AijpgOqtip = SijpgTpg = 0, (29)

where the particle displacement u, (m) is related to the particle velocity in the solid via vy, = O;tr,.
We assume that the outer radius b+ of the outermost shell is small compared to the wavelength,
or, equivalently that the traveltime across a borehole may be neglected compared to the width of
the typical time window in which the wave phenomena of interest take place. To express this, we
introduce the new variables

e, =x,, zz=es, t =e¢, (30)
where € is a small parameter (cf. Burridge et al. [7]). Accordingly, we represent all field quantities
in terms a power series expansion in the small parameter, according to

Tpg = Z Té;), Uy = Z u,(.,?), p= Zp(n) and wp, = Z w,(,’:), (31)
n=0 n=0 n=0 n=0
where
ng'g) = 6’"1‘;,2"‘), u;’;‘) = enuﬁn% p(n) = e"p'(") and ,w?(;,:) - e“w,’,g"), (32)

respectively. After substitution of Egs. (30)-(31) into Egs. (la), (28) and (29), we obtain a
series of differential equations. Upon collecting the terms with equal powers of ¢, we arrive at an
infinite set of differential equations for the coefficients in Eq. (31). Knowing the order of these
coefficients, we may recast the equations in terms of the original coordinates and subsequently
solve the equations for ascending orders of e. Before we present the results of this analysis, let us
define the radial stiffness according to

—TaulaV
)= 2K AE 33
() = TP, (33)
where b denotes the radial distance to the centre of the borehole. Note that the radial stiffness is
continuous across all interfaces.
The equations for O(e°) pertaining to the fluid wave motion show that p©® and wgo) are con-

@

stant over a cross-section of the borehole fluid, and that w)’ vanishes identically. Investigation of
the fluid/solid boundary conditions for O(€®) yields p(o)émuu,, =-An ,\k,u,\'r,sg) at the fluid/solid
interface. To satisfy the boundary conditions for O(¢®) at the interfaces between the circular

cylindrical shells it is required that ug,?) and A;Ak,u)\r,sg)
Further, 4! should vanish for (z,2,)!/? — co. Together with the boundary conditions, the equa~
tions for O(€°) pertaining to the solid comprise a planar quasi-static problem in r/{?‘), Tég) and uf\o),

are continuous across these interfaces.

with p(® as the scalar amplitude forcing function. After having solved the quasi-static problem
within each of the cylindrical shells, we can derive a backward recurrence scheme to obtain the
radial stiffness at consecutive interfaces starting at gy = 2c1212 for b = b at the outer wall (cf.
De Hoop et al. [8]).
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To satisfy the boundary conditions for O(e') at the interfaces between the circular cylindrical

shells it is required that us,}) and A; ,\k,u,\r,g) are continuous across these interfaces. Further, we
may treat the solid equation of motion for O(e!) in the integral sense according to

-—/ cos Aj,\k,.l/)\‘rg) dl = 2, EB+\B~ AjgkragT,ES) dx. (34)
Tu

zafixed

Investigation of the fluid/solid boundary conditions for O(e!) yields p(l)ém,,u,‘ = -Am,\krlqr,g)

and u,\atuf\o) = wag‘l) at the fluid/solid interface. The equations for O(e!) pertaining to the fluid
wave motion lead to the following waveguide-mode equations for the so-called tube wave

85p@ + pdwl” = 0 (35)
050 + (k + 2/m)0p® = Q(t)6 (25 — z5) (36)

where 7, is the radial stiffness at the fluid/solid interface.
The solution to the Laplace-transform-domain counterpart of Eq. (36) is found to be

Pexp[— z3 — z3)]{1; 1 fe > x5
{ﬁ(c,);wgf,)}:{ expl-svr(sa = 5] {1i70/p} for @3> 5, -

Pexplsyr(es — 25)] {1; —7r/p'} for =3 < a3,

where v = (pf&f + 2p/11)1/2 and P = p'Q(s)/(2Q~yr) denote the tube-wave slowness and the
modal pressure amplitude, respectively. Having determined the fluid wavefield quantities, we may
apply a quasi-static recurrence scheme (cf. De Hoop et al. [8]) to obtain the O(e?) coefficients of
the traction and particle displacement on the outer interface 887,

Next, let us examine the spectral surface sources defined in Eq. (6). To this end, we express
the Fourier kernel as exp(isa)z3) exp(isayvxbt), in which 23 denotes the horizontal coordinates
at the centre of the borehole. Since, |sa,| is inversely proportional to the wavelength, we have
isa, v, bt = O(€). Hence, we may rewrite the Fourier kernel according to

exp(ssaxz3)[1+ isanvabt + O(e?)]. (38)

Upon substituting both Eq. (38) and the expressions for the normal stress and the radial com-
ponent of the particle velocity, which follow from the quasi-static recurrence scheme, into Eq. (6),
we can analytically evaluate the integrals along the pertaining cross-sectional circular boundary,
yielding the leading-order in-plane components of the spectral-domain boundary-surface sources.
The calculation of ﬁg}\” = ﬁ§g+ would require that we evaluate the vertical component of the
particle velocity at OBF. Fortunately, it turns out that the pertaining source contribution is more
than one order of € smaller than the in-plane source terms, and may hence be discarded. However,
in the presence of an axisymmetric TIV shell structure surrounding the fluid-filled hole, the vertical
component of the boundary-surface-force source containing ng\) and the in-plane boundary-surface
(0)

sources containing 7,,’ are of the same order in ¢. However, as T,ES) is known throughout the shell

structure, we may employ Eq. (34) to calculate f§33+ in closed form as well, As a result, we
are left with line integrals (cf. Eq. (22)) along vertical segments, which describe the tube-wave
radiation into the formation.

Across the vertical levels #3 = 3,7 at which the interfaces between two solids are located,
the radial stiffness and hence the tube-wave slowness jump. As a consequence, an incident tube
wave will be scattered at the pertaining level. Imposing the condition that the leading order
acoustic pressure () and axial volume flow Q"u‘):(,o) be continuous across the pertaining level (cf,
White [11]), leads to a standard one-dimensional scattering formalism for the tube waves. Note
that at such a level the corresponding boundary-surface sources cease to be analytical, which gives
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rise to strong secondary borehole source contributions.

5. THE RECEIVED ACOUSTIC PRESSURE

To construct the full spectral wavefield at a certain vertical level, we first observe that the
superposition principle holds. Hence, we may regard the overall wavefield as consisting of the sum
of individual wavefield constituents that — after their excitation — have undergone successive
reflections and transmissions in the process of propagating through the medium. An individual
wavefield constituent that has interacted o times at the interfaces is referred to as a generalized-
ray constituent of the order =, also known as a generalized ray (cf. Spencer[12]).

The next step, is to construct the full spectral acoustic pressure at the receiver level on the axis
of the receiving borehole, To do this, we employ the reciprocity theorem for acoustic wavefields in
fluid/solid configurations. The key to the pertaining analysis is the introduction of an auxiliary
state, for which we take the wavefield as it would be generated by a point source of volume
injection located at the point where we want to evaluate the received acoustic pressure. For a
detailed description, we refer to De Hoop et al. [8]. The analysis leads to

BOF) = Aijpg [ [-Fi50F + 0P a5, (39)

Subsequently, we use Eq. (4) to express the Laplace-transform-domain incident wavefield quant-
ities at the wall of the receiving borehole in terms of their spectral counterparts, after which we
interchange the order of integration. In analogy with the transmitting situation for TIV media,
the resulting integrals in the cross-sectional plane can be evaluated analytically yielding expli-

Bt
cit expressions for the boundary-surface receivers fk o5 and h R, respectively. Further, upon
introducing A;; = 6;,6,; — 6i3ds; and employing certain symmetry relations, we finally obtain

- . i aBt -8B .
p(a#,x:}f) = exp(zsa”mf)/—r};A,mAJnh l“+f "‘/‘&1_7 5" dzs, (40)

where the integral is carried out along the axis of the receiving borehole.

6. THE SPACE-TIME-DOMAIN QUANTITIES

The parameters of integration in the line integrals describing the tube-wave radiation into the
formation and the reciprocal reception of the elastic wavefield by the tube waves in the receiving
hole only occur as linear factors in the arguments of the exponentials associated with the vertical
propagation. Hence, these integrals can be evaluated analytically, leaving us with the contributions
from the end points of the intervals of integration. To each single contribution to the received
acoustic pressure, there corresponds a time delay t4el associated with the tube-wave propagation.
Consequently, an individual spectral generalized-ray Green's-function constituent G and the time
domain acoustic pressure may be cast in the following generic form

(o))

~ - t
= 8% = 4n? exp(—stae) exp(—s Y bN)R(au) — PR = D gx07Q(), (41)
generalized
rays
where exp(—s Y_ h7) is representative of the down- and upward propagation through the consec-
utive layers, ¥ describes the excitation by a primary or secondary tube-wave source, the scattermg
at the interfaces and the reception by a primary or secondary tube-wave receiver, while § denotes
the convolution with respect to time. Now, let us formally apply the inverse Fourier transforma-
tion on § (cf. Eq. (4)). Upon employing the polar coordinates a; = —ipcos(), az = —ipsin(¢),
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with dayday = —pdpdi), we obtain the Laplace-transform-domain counterpart of
T ico
g=-Re [ [ exp(-st)i(v,¥)pdpav, (42)
=0 p=0

where p represents the horizontal slowness, t = t(p,¥) = prcos(y) + 3 hy(p, ¥) is a complex
parameter with the dimension of time, r denotes the horizontal offset between the source and
receiving holes and %(p, %) = X[ou(p, %)), respectively. To return to the space-time domain, we
employ the Cagniard-de Hoop method in polar coordinates. For a detailed description of this
method, we refer to Van der Hijden [9]. Here, we mention the crucial steps in the method. First,
for 1 fixed, we deform the contour of integration such that t is real and increases along the
contour. This contour of integration is unique and is known as the Cagniard contour. Next, we
map t to p and replace the parameter of integration p by t. Subsequently, we interchange the
order of integration, after which the space-time-domain counterpart of § may be recognized by
inspection. This procedure leads to

g=Re [ =xlp(t, ), ¥lp(t, )00t ¥) . (13)

To show that the deformation of the contour of integration into the complex p-plane is allowed, the
analytical properties of the splitting matrix Ble,(p, %)] in the complex p-plane can be employed.
1t turns out that the only singularities of B in the complex p-plane are branch points located on
the real p-axis. Further, upon identifying a slowness with a reciprocal speed, it can be shown
that the matrix —iB, evaluated at an infinitesimal distance above the real p-axis and beyond the
outermost branch point, is related to a particular realization 6f the so-called Barnett-Lothe tensor
via a similarity transformation. Finally, the integral representation for the splitting matrix may
be used to show that Rayleigh-wave poles must be located on the real p-axis.

6.1. An alternative implementation of the modified Cagniard method for TIV-
symmetric stratified media

Below, we present a numerically expedient alternative to the 4-integral. For TIV media both
the vertical slownesses and x are independent of 1. So, performing the -integral for t fixed, p
and 9 have to satisfy

t = prcos(¢¥) + Z hy(p). (44)

Hence, as 9 runs from 0 to 7, the horizontal slowness traces out a path in the complex p-plane,
starting at p = p and ending at p = p. = —p}§, where py and p, are the horizontal slownesses that
satisfy

t=pr+y hy(m) and  t=—pr+ ) hy(pe), (45)

respectively. Now, we change the variable of integration from 1 to p. As t is fixed, taking the
differential of Eq. (44) leads to

0= dt = 0,tdp — prsin(yp)dy, — dvp=[pr sin(1p)]'1|¢___¢(p)3pt dp. (46)
A Cagniard contour never enters the lower half of the complex p-plane. Hence, we may write
prsin(y) = i[pPr? cos? () — p*ri]7 = i[(t — 3 hy)? - 7, (47)

in which the real part of the square root is taken nonnegative and we have used Eq. (44).
Now, let Cfb denote the segment of the Cagniard contour Cy that starts at p = 0 and ends at
p = p(t, ), being the horizontal slowness that corresponds to the time ¢. Then, we may deform
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Experiment no. Elastic properties (in GPa and kg/ mg)

C11 €33 C13 C44 Ces P
1 295 335 111 71 68 8900
2 95.9364 95.9364 19.8716 38.0324 38.0324 3290

Table 1: The elastic properties of the formation pertaining to the two experiments

the contour of integration in the complex p-plane — keeping the end points p, and p, fixed — in
such a way that p traces out C} in the opposite direction until it reaches the origin, after which p
traces out Ci = (—C})*. As a consequence of the contour deformation described above, Eq. (43)
becomes

9(2m, €5,t) =Im { /,, o /,, » }pfc(p, )1(t— 3 h)? - p*r?"% dp, (48)

where X(p,t) = X[p, ¥ (t, p)] and we have used the elementary property Re[—i(-)] =Im(---). The
integrand in Eq. (48) is an odd function of p, analytic in the complex p-plane except at the branch
points branch cuts and poles and strictly real on the segment of the real p-axis in between the
innermost real branchpoint and its opposite. Hence, we may rewrite Eq. (48) according to

o(em e =2m [ pX(n) [~ D) -] Hap, (49)
[aad]

which is akin to a representation obtained by Helmberger[13]. The rationale of the above is that we
avoid having to evaluate the Cagniard contours for different values of 1. Moreover, the integrand
need only be evaluated at a limited number of points on Cf, after which rational interpolation
suffices to obtain the values of the integrand at intermediate points.

7. NUMERICAL EXAMPLES

Below we present numerical results pertaining to two different cross-well experiments, one in
an anisotropic homogeneous formation and one in an isotropic formation bounded from above by
a free surface. The distance between the boreholes in both experiments is 100 m.

For the source signature 2Q with which the Green’s functions are convolved, we take the
second derivative with respect to time of the following causal pulse (cf. De Hoop et al. [14])

0 for t<0,

Q@) = (at

v (50)
—U-> exp(—at + v) sin(wgt) for ¢ > 0,
with ¥ = 2, a pulse width of 5ms, a centre frequency of 1000rad/s (159.15Hz), a rise time of
v/a = 2.7ms, and unit amplitude at the rise time, respectively.

In both experiments, the boreholes are filled with water with a wavespeed ¢ = (pfxf)~1/2 =
1500 m/s and a density pfe = 1000 m/s, respectively. Further, the receiving borehole has a
perfectly bonded steel casing, with compressional- and shear-wave speeds cp = 5750 m/s and
cs = 3120m/s, and a density p = 7910 kg/m3, respectively. The transmitting borehole is un-
cased. The values of the formation parameters pertaining to the two experiments are listed in
Table 1.
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In the first experiment, the formation is a homogeneous TIV medium. The constitutive coeffi-
cients are those of Cobalt, i.e., the associated real slowness surface belongs to the main class Cy,
in the classification scheme proposed by Chadwick [15]. The qSV sheet of this slowness surface
is concave for 0.639 < |v/p| < 1.335. After projecting the corresponding wave surface from the
point where the source is located onto the the axis of the recelvmg borehole, the cuspldal edges of
the wave surface are mapped onto the vertical offsets & — 2§ = 87.87 m, and 28— 25 = 106.28 m.
We have chosen z& — 2§ = 100 m, so as to obtain an optimum separation of the triplicated events.
The cross-hole Green’s function and the associated pressure pulse are depicted in Figure 2.

20
g [kg/m?]

p [Pa] 10 /\
0 /\\//\ w /\\/

10 20 30 40 50

t [ms]

Figure 2: The cross-hole acoustic-pressure Green's function and the the received acoustic pressure
pertaining to the first experiment

In the second experiment the isotropic formation is bounded from above by a free surface at
the vertical level z3 = 0 m. The source and receiver are located at z5 = 50m and z§ = 80m,
respectively. The constitutive parameters are those of Peridotite 2 found at Kailua, Hawaii. The
time window of observation has been chosen such that the Rayleigh wave that is excited by the
secondary tube-wave source at the free surface and received by the secondary tube-wave receiver
at the free surface, arrives after the final time of observation, as the other events would otherwise
be overshadowed due to the large amplitude of this Rayleigh wave. The first two data sets depic-
ted in Figure 3 represent the Green’s function and the associated pressure pulse of the primary
compressional- and shear-wave. The last two data sets depicted in Figure 3 represent the full
Green’s function and the associated pressure pulse, i.e., all combinations of primary and secondary
sources and receivers and both the direct and the reflected (and converted) wave contributions
have been taken into account. For instance, the sharp peeks in the Green’s function in the third
graph in Figure 3 are due to the coupling between the wavefield radiated by the secondary tube
waves at the free surface in the source hole to the primary tube waves at the receiver and to the
coupling of the wavefield radiated by the primary tube-wave at the source to the secondary tube
waves at the free surface in the receiving hole.
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CONCLUSIONS
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Figure 3: The cross-hole acoustic-pressure Green’s function and the received acoustic pressure
pertaining to the second experiment; in the two graphs at the top only the primary compressional-
and shear-wave contributions are shown.

In stratified formations the cross-hole transient signal transfer contains strong secondary wave
contributions. This explains the complexity of the wave phenomena observed in real cross-hole
data sets. The method presented in this paper is an efficient method to fully calculate the pertain-
ing cross-hole transient signal transfer for formations consisting of a modest number of horizontal
anisotropic layers. From a theoretical point of view, the splitting and impedance matrices as
defined in the complex horizontal slowness plane, combined with the alternative implementation
of the Cagniard-De Hoop method provides a powerful new modelling tool. The small-parameter
analysis is ideally suited for a rigorous investigation of the low-frequency tube-wave motion in a
cased borehole embedded in an anisotropic formation.
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