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Abstract

Based on the parabolic equation approximation, a set of equations have been de-
veloped for three-dimensional time-harmonic wave propagation in an elastic medium.
The elastic equations for the scalar and vector displacement potentials are written
in a matrix form which is a direct counterpart to previous work on the scalar wave
equation for a fluid medium. This paper introduces a numerical solution of the elastic
equations. . An ordinary differential equation (ODE) method in conjunction with a
finite difference scheme leads to a stable marching procedure. One feature of this
approach is that every finite-difference discretization results in a tridiagonal system
of equations; these equations can be solved efficiently by recursive formulas. The
criterion for choosing the range step size is discussed, and the stability and accuracy

of the method are analyzed.
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1 Introduction

For the treatment of coupled fluid-elastic acoustics problems, a combination of three
models is needed: one to represent the wave propagation in the fluid medium, one
to represent the wave propagation in the elastic medium, and one to represent the
fluid-elastic interface conditions. A complete integration of these three models would
constitute a solution to a general class of problems involving fluid-elastic interactions,
including some interactions which are important in shallow water ocean environments.
This paper discusses a partial solution to the fluid-elastic interaction problem - a
numerical solution to a set of representative wave equations in an elastic medium.

This paper focuses on the three-dimensional, one-way propagation problem in an
elastic medium. There exist a number of models for the numerical solution of one-
way or parabolic elastic equations. Most of the previous computational methods are
two-dimensional; a review of these developments can be found in ref. [3]. We attack
here the zeroth-order problem of the model developed by Nagem et al. [3]. This
model was purposely developed in such a way that is analagous to and compatible
with existing three-dimensional one-way propagation models in the fluid medium.
Without details, we first give the relevant elastic equations derived in ref. [3]. Next,
the set of elastic equations are written in a vector ordinary differential equation (ODE)
form. A numerical ODE solution is introduced to solve this vector ODE by means of
single scalar equations with successive substitutions. The criterion for choosing the
range step size is discussed, and stability and convergence of the numerical method
are examined.

2 Three-Dimensional Elastic Equations

Nagem et al. [3] applied a perturbation method to derive equations for wave propa-
gation in an inhomogeneous elastic medium. The formulation is three-dimensional,
with arbitrary variations in elastic constants and in density. The elastic displacement
vector u(® is written as

u® = V4 4 ¥ x p0), 2.1)

where ¢(® and 9(®) are the zeroth-order scalar and vector displacement potentials.
The potentials are further written as

40 = =12 4O g, z)eker . (2.2)
P = =2 B0)(r,0, 2)e" (2:3)
¢§°) = r"l/zB((,o)(r,H, z)eikTr (2.4)
¢§0) - ,,,—1/2B£0)(,r, 9, z)eikrr’ (25)

where (¥, s, 1.) are the components of ¥ with respect to the (7,6, 2) cylindrical
coordinate system. A diagonalization technique is used to convert the equations
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for the envelope functions A(®), B(®), B§°) and B{® into an operator form which
distinguishes outgoing waves from incoming waves. After the separation, the zeroth-
order outgoing wave equations are

(% +ik — k14 LL) A =0 (2.6)

(32 + M2 - Y1+ 1) BO =0 (2.7

O 40 _ 0 ) _ 1 9B
(6r+ZkT — ik/1+ Lr | B - e\ (2.8)

RO © _ ! 9B
(61’ + 'LkT 'LkT 1 + LT Bz — 2z’kg?) 1 + LT 86 . (2.9)

In.the above equations, the operators Ly and Ly are defined by

Ly = (7973))—2 (56;2 + -7;1;—(%2;) (2.10)

L= @‘(}T); (-63—:; + ;1;56;) . (2.11)

The longitudinal wave number k") and the transverse wave number k{*’ are given by
(k) = ﬂ;’;%—j;@; (2.12)

(k)2 = £ ij();jz (2.13)

where w is radian frequency, p(%) is the mean (average) density and A(® and p(®) are the
mean Lamé parameters. The first-order equations which account for the perturbations
in density and in the Lamé parameters have a form very similar to Eqs. (2.6)-(2.9),
and thus the numerical techniques discussed for the zeroth-order equations in this
paper can be applied to the first-order equations as well. To simplify the notation,
the superscript zero on the longitudinal and transverse wave numbers and on the
envelope functions A, B,, By and B, will subsequently be omitted.

3 An ODE Formulation

We formulate Egs. (2.6) through (2.9) into a system of equations in an ordinary
differential equation form. We define

ar= P+ QL (3.1)
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ar = Pr+ Qr (3.2)
‘Br = Rr + S, (3.3)
where L L g
Pr= s 3 oA (3.4)
1 82 1 84
Pr= it 8500 (3.5)
1 1 62
O =g oe (3:6)
1 1 62
Qr = 7% 902 (3.7)

1 1 0 3 o

Br = U352 T 1ok o (3.8)
1 1 62
ST = —Mr—zb‘e—z (3.9)

The operators oy, and ar are wide-angle approximations [4] to the operators involv-

ing v/1+ Ly and /1 + L7, respectively, and the operator fr is the corresponding
wide-angle approximation to the operator involving 1/4/1 4+ Lr. With the above ap-
proximations and definitions, Egs. (2.6)-(2.9) can be written in matrix form as

A ar, 0 0 0 A
0 B , 0 oar 0 0 B
Sl r = y 3.1
Or | Be ‘1 o Brg ar O By (3.10)
B, 0 0 Brg oar B,

Equation (3.10) is in the form of a first-order system of ordinary differential equa-
tions. In the following section we present an efficient method for solving Eq. (3.10)
numerically.

4 A Numerical ODE Solution

We look not only for a solution of Eq. (3.10), but also for an efficient solution; that is,
a solution which maintains the required accuracy while at the same time minimizes
memory requirements and computation time. It is possible to consider numerical
methods which solve Eq. (3.10) as a system, but such methods require large memory
capacity and a correspondingly slow computation time. It is much simpler to note
that the lower triangular form of the 4 X 4 matrix in Eq. (3.10) allows a method which
solves each individual scalar equation sequentially. By developing a sequential scalar
approach, we may take advantage of the efficient and well-developed techniques which
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have been derived for solving wave equations in scalar acoustics. More importantly,
the coupling in the matrix system is explicitly maintained.
Each scalar equation in Eq. (3.10) can be written in the form
9
or

taf +1i8g
= (P+Q)f+i(R+095)g, (4.1)

where the general operators «, 8, P, @, R and S can represent either the logitudinal
operators (subscript L) or the transverse operators (subscript T') defined in Sec. 3.
The forcing term g is assumed to be known. For the A and B, equations in Eq.
(3.10), the forcing term g is zero. If the A and B, equations in are solved first, then
the forcing term g in the By equation depends on the known function B,. After the
By equation has been solved, the forcing term g in the B, equation depends on the
known function Byg. This is where the coupling is maintained. We will give a complete
solution method for the specific equation

0 : . 0B,
EBo = iorBy +ifr P
. . OB,
= i(Pr+ Qr)Bs + i(Rr + Sr) e (4.2)

This solution method can be applied to each of the four scalar equations in Eq. (3.10).

4.1 The NLMS (NonLinear MultiStep) Method

In the NLMS (NonLinear MultiStep) method, a discretized solution of Eq. (4.2) is
written in the form

(Bt = €en((By)" + (Ar)ify (a@z,)

0B, \"
Oz

= ePrianQran (B 4 (Ar)ify (BB’> , (4.3)

_ ei(PT'+QT)(Ar)( Bg)" + (Ar)iBr (

0z

where the superscript refers to the discrete index corresponding to the range coordi-
nate r, Ar is the spatial increment in the range direction, and where the commutativ-
ity between eF7(A7) and €i97(A") is assumed. This is a simplified first-order explicit
scheme, which has been successfully applied to two- and three-dimensional acoustic
equations in refs. [2] and [1]. The theory of stability and convergence for this scheme
has been well established, as discussed in ref. [1].

In order to solve Eq. (4.3), it is necessary to develop expressions for the exponential
operators eF7(A") and ¢*@7(47), Using Eq. (3.4), the operator ePr(87) can be written
as

giPr(ar) _ esr(%r,-a‘z)’ (4.4)
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where

8, = ikr(Ar) (4.5)
and | &

T, = %5?2 (46)

We now take advantage of using the rational function approximation [4]

ip_1 1+ + )T,
6r(§T-—3T%) _ 2T \a T 4 /72 rs). 4,
erer 1+(%—%)1‘,+O( ) (1)

It will be seen below that this rational function approximation leads to a highly
efficient finite difference scheme.
Using Eq. (3.7), the operator e'@7(Ar) in Eq. (4.3) can be written as

eir(Ar) = ghriTs (4.8)
where |1 82 .

Here we use the Padé (1,1) rational function approximation to obtain

e&%’l‘g = 1 + _IPO

. —T A0 L o). (4.10)

With the preceding rational function approximations for e'F7(A7) ang Qr(A7) Eq,
(4.3) becomes

e (R (2 () o

b )] -t

o (oo oo (- £)n] -] (22

(4.12)
We rewrite Eq. (4.12) as

.MH

[1+(§-—%) Jors = @r =@ + @, (4.13)
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where (VY = (1 _ %Fo) (Bg)™t! (4.14)
(91)" = [1 + G + %) Pz] '[1 + %ro] (Bs)" (4.15)

(92)" = [1 + (% - %) 1“,] [1 - %’—1‘9} i(Ar)Br (6£ ’)n. (4.16)

The finite difference scheme for solving Eq. (4.12) consists of two steps. In the first
step, central difference approximations are applied to the differential operators in Eq.
(4.13), and Eq. (4.13) is solved for (V)*'. In the sécond step, central difference
approximations are applied to the differential operators in Eq. (4.14), and Eq. (4.14)
is solved for (By)"*'. Step one involves the z-derivatives contained in the operator
., and step two involves the f-derivatives contained in the operator I'y. It will be
shown that in each step it is only necessary to solve a tri-diagonal system of linear
algebraic equations.

We now give the finite difference equations needed to implement the solution of Eq.
(4.13) and Eq. (4.14). In the equations which follow, we continue to use a superscript
to refer to the discrete index of the range coordinate r. The first subscript refers to the
index of the depth coordinate z, and the second subscript refers to the discrete index
of the azimuthal coordinate 8. The quantity Af is the increment in the 6-coordinate,
and the quantity Az is the increment in the z-coordinate. We also define

8, = kr(Az) (4.17)
8¢ = krr(A9). (4.18)
The expression for the term g; then becomes
" [ 1 6\ 1 6 511 6 n
(g)ms = _1 + (Z + Z) Eg@] [1 + Zgﬁw] (Bo)m.

N AR N
T T\eT e ) e
6?' n 61' n 6'- n
. [@(Ba)m,Hl + (1‘ — 2—63> (Ba)m,z + @(Bo)m,l—l]

— .._1_+ b
o482 T 482

6" n 61' ! n 51. n
. [E(Bo)m+1.l+1 + (1 - -2?‘3) (Bo)mirg + 16—3(Bg)m+1'1_1]

Lk
* 282 267
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6” n 61' n 5,. n
. [E(BO)m,l+1 + (1 - :2—52) (Be)ms + 4—53(39)’""’1]

o
462 " 457
[ n | 6, n ér n
(G B+ (1 35 ) Bl g BN
(4.19)
Next, we consider the term g:
o 1 &\ 18] 6118 8B,
(92) —’@”P+Q‘z)@az}"2§ﬁmJﬁ( )
, 1 &\ 18], 6110
=*@”P+ﬁ‘z)@az}-1ﬁﬁm4
1t 3 8 118)(68)
2kr 4k} 022 ' 16k} 02*  4k3 r206%| \ 0z
, 1 &\ 162, 611 8
==“A”Pf(1"z>@5;L“—2mﬂam]
112 36 118 1 0B, \"
2 4kZ 822 ' 16kE Bz% 4k r? 06% 0z |
(4.20)

The explicit finite difference expression for g, is straightforward to derive but is very
long, and we will not give the expression here. Once the expression for g = g; + g,
has been obtained, Eq. (4.13) is

[+ (G- %) 7] O = @ (a.21)

where the right-hand side is now known. Using a central difference approximation for
the z-derivative, Eq. (4.21) becomes

1 6 ntl 6, " 1 &\1 .. n
(Z 4) (V)l +1,m [1 + (Z - Z) 52] (V) +1 (Z - Z) E(V)l-:-l];m = (g)l,m'
(4.22)
For each value of the range index n and the azimuthal index m, Eq. (4.22) is a

tridiagonal system of equations in the depth index !. Efficient methods for solving
such a sytem are discussed in ref. [4].

When the values of (V)**! have been computed from Eq. (4.22), Eq. (4.14) be-

comes

l §£ 11 62 n4+l __ n+1
[1+ (4 B 4) 2 k2 agz] (Bo)im = (V)im » (4.23)
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where the right-hand is now known. Using a central difference approximation for the
0-derivative, Eq. (4.23) becomes

& 2 1
S (1 ) B - FaEaE. - RS 6
For each value of the range index n+1 and the depth index [, Eq. (4.24) is a tridiagonal
system of equations in the azimuthal index m. Equation (4.24) may be solved with
the same methods used to solve Eq. (4.22).

In summary, the finite difference solution of Eq. (4.2) is computed as follows. First,
the expressions for g; and g, are computed using Eqs. (4.19) and (4.20). Second, the
tridiagonal system represented by Eq. (4.22) is solved for (V)**'. Finally, when
(V)™*! has been obtained, the tridiagonal system represented by Eq. (4.24) is solved
for (B)3*". The entire process is repeated for each range increment and for each of the
four scalar equations in Eq. (3.10), thus giving a marching procedure for computing
the complete elastic field.

4.2 Remarks on the Selection of Range Stepsize

The numerical scheme based on Eq. (4.3), which we apply to solve the ordinary
differential equation given in Eq. (4.2), is a 1st-order nonlinear mustistep as described-
in ref. [1]. For the application of Eq. (4.3) to solve Eq. (4.2), the range step size must
be selected such that is satisfies the stability condition

1
Ar< oy (4.25)
where the L, is the Lipschitz constant for || 22 || [1). Note that in the case when the
g function is zero, as in the first two scalar equations of Eq. (3.10), any step size can
be selected; this means the scheme based on Eq. (4.3) is unconditionally stable, since

the rational function operator is unitary. If g is not zero, the scheme based on Eq.
(4.3) is conditionally stable.

5 CONCLUSIONS

The set of elastic wave equation given in Egs. (2.6)-(2.9) was developed to be useful for
numerical calculations and to be consistent with the formulation of three-dimensional
fluid wave equations. This makes the elastic equations adaptable for the development
a complete model for the study of fluid-elastic interface problems. However, it is nec-
essary to solve the elastic equations accurately and efficiently. The numerical schemes
introduced here have been very well developed in theory and in the practical solutions
of purely fluid problems. The fact that the elastic equations can be formulated and
solved with only small modifications makes the scheme we have developed here very
desirable for problems involving both fluid and elastic wave equations.
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