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Abstract

Traditional computational approaches toward simulation of radiation and scattering
from elastic bodies submerged in an acoustic fluid have been primarily based on fre-
quency domain formulations. Classical time-harmonic approaches (including boundary
element, finite element, and finite difference methods) have been effective for problems
involving a limited number of frequencies (narrow band response) and scales (wave-
lengths) that are large compared to the characteristic dimensions of the elastic struc-
ture. Attempts at solving large-scale structural acoustic systems with dimensions that
are much larger than the operating wavelengths and which are complex, consisting of
many different components with different scales and broadband frequencies, has re-
vealed limitations of many of the classical methods. As a result, in recent times there
has been renewed interest in new and alternative approaches, including time-domain
approaches. This paper describes recent advances in the development of a new class
of high-order accurate and unconditionally stable space-time methods which employ
finite element discretization of the time domain as well as the usual discretization of
the spatial domain. The formulation is based on a space-time variational equation for
both the acoustic fluid and elastic solid together with their interaction. This novel
approach to the modeling of the temporal variables allows for the consistent use of
high-order adaptive solution strategies for unstructured grids in both time and space;
a technology that is vital for the efficiency of the resulting computational algorithm.
Another important feature is the incorporation of temporal jump operators which al-
low for discretizations that are discontinuous in time. The specific form of these jump
operators are designed to capture multiple scales in the response of large-scale struc-
tural acoustic systems. For additional stability, least-squares operators based on local
residuals of the Euler-Lagrange equations including non-reflecting boundary conditions
are incorporated. Topics to be discussed include the development and implementation
of new higher-order accurate non-reflecting boundary conditions based on the exact
impedance relation through the Dirichlet-to-Neumann (DtN) map, multi-field represen-
tations based on acoustic pressure and velocity potential variables, error estimation and
stability.

Introduction

Most industrial calculations of transient structural dynamic and wave propagation prob-
lems in the time-domain have used boundary element methods based on Kirchhoff’s retarded
potential integral formulation, and varients of traditional finite element schemes employ-
ing standard Galerkin methods in space and finite difference techniques for integrating
in time, that feature low-order accurate solvers, and low-order approximate non-reflecting
boundaries. In recent years, dramatically different approaches to these types of numerical
simulations have been advanced [1, 2, 3, 4, 5, 6, 7, 8, 9] which use emerging finite element
technologies. The principal features of these space-time methods are that they employ: (i)

higher-order approximations in both space and time dimensions, (ii) unstructured meshes
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Figure 1: (Left): Coupled system for the exterior fluid-structure interaction problem, with
artificial boundary I's, enclosing the finite computational domain Q = ;U ,. (Right):
Tlustration of two consecutive space-time slabs with unstructured finite element meshes
within a slab.

in both space and time, (iv) physically based dissipative mechanisms, (v) higher-order
non-reflecting boundary conditions, and (vi) iterative solvers for high-performance parallel
computation. Collectively, these features give promise of significant advances in efficiency,
reliability, and flexibility in simulation software designed for transient wave-propagation.
High-order space-time finite element methods are capable of delivering very high accura-
cies for wave propagation simulations, particularly for problems involving sharp gradients
in the solution which typically arise in the vicinity of fluid-structure interfaces and near
inhomogeneities such as stiffeners, structural joints, and material discontinuities. In these
problems, solutions obtained with standard numerical methods may have difficulty resolv-
ing the discontinuities in the physical solution — in the case of standard time integrators,
large spurious oscillations may appear which pollute the entire solution. In addition, for
problems involving the propagation of pulses with broadband frequencies over a large dis-
tance, commonly used second-order accurate numerical algorithms may exhibit significant
dispersion errors causing misrepresentation of arrival time and directionality at a distant
target. In this paper, recent developments in the application high-order accurate space-time
finite element methods for structural acoustics are presented.

The Structural Acoustics Problem

Consider the coupled system consisting of a structural region §}, surrounded by an infinite
fluid region B. The interface boundary between the structure and fluid domains is denoted
by T;. The unit outward normal to the structure (inward normal to the fluid) on T is
denoted by m. The non-reflecting boundary is denoted I',, and positioned such that the
original fluid region B is divided into a bounded interior domain Q¢ and an exterior do-
main Qe such that B = Qf U Qo; see Fig. 1. The structure is assumed to be governed
by the equations of elastodynamics while the fluid equations are taken under the usual
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linear acoustic assumptions of an inviscid, compressible fluid with small disturbance. The
momentum equations for the fluid are

Vp+ppp=0 1)

where p(z , t) is the acoustic pressure, v(z, t) is the fluid particle velocity, and ps(z) > 0
is the density of the fluid. A superimposed dot indicates partial differentiation with respect
to time t. The constitutive behavior of the fluid is assumed to be

P+ EfV-v=0 2)

where K; = pyc? is the bulk modulus and c is the acoustic wave speed. From the assumption
of an irrotational acoustic fluid, the velocity can be written as the gradient of the velocity
potential ¢ as v = V¢. Consequently, pressure is related to the velocity potential by
p=—p f‘f-" On the structural interface I';, the normal component of the fluid velocity is
assumed to be equivalent to the motion of the structural surface. Projecting the velocity
normal to the structure gives the fluid-structure coupling: v - n = v, - n where v,(z, ) is
the structural velocity vector. The influence of the fluid pressure acting on the structure is
given by the normal traction o - n» = —pn where o is the symmetric Cauchy stress tensor.
The stress is assumed to be related to the structural displacement vector u,(z , t) through
a linear constitutive relation of the form:

o(us) = C: Vu, | 3)

where V?u, is the symmetric gradient and C = C(=) is the fourth-order tensor of elastic
coefficients; assumed to satisfy the usual pointwise stability and major and minor symmetry
properties. The equations of motion for the structure are

V-0 = psb, (4)

where p,(z) > 0 is the structural density, and v,(z,t) = @,(z,t). The drivers for the
problem are the initial conditions:

u,(z,0) = u(e) ; vy(z,0) = v,(2) z € (5)
#(z,0) = ¢°(=) ; p(z,0) = p°(2) z €y (6)

Exact Non-Reflecting Boundary Conditions

In this paper an exact non-reflecting boundary condition is used as a basis for the space-
time finite element formulation. An exact non-reflecting boundary condition is obtained by
taking advantage of the fact that an outgoing wave solutlon can always be written in terms
of a series of wave harmonics with respect to a sepa.rable coordinate system. In the frequency
domain, i.e., the time-harmonic problem, this idea has been exploited by several researchers
to derive exact non-reflecting boundary conditions; see e.g. the Dirichlet-to-Neumann (DtN)
impedance operator derived in [10]. The DtN operator is a nonlocal (integral) and frequency
dependent boundary condition applied on a separable boundary T'

For a spherical boundary T, of radius r = R with unit outward normal n to T, the
exact representation of the exterior acoustic impedance restricted to I's, is,

N-1

RO = 2 wmlB) [ salbrp,000) (R0, ) T ™

n=0
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where the DtN kernels s,, » = 0,1,2,--- are given by,

. %}HP( ¢)Pi(cos ¢') cos j(0 — 0') (8)

=0

with impedance coefficients,

S () = F(E)
(B =5 )

In the above, w > 0 is the frequency, k¥ = w/c is the acoustic wavenumber, k = kR,
0 < 0 < 27 is the circumferential angle and 0 < ¢ < 7 is the polar angle for a spherical
truncation boundary. The differential surface area is dT' = J,dfdp, where J, = R?sin .
The functions PJ are associated Legendre functions of the first kind, and h, are spherical
Hankel functions of the first kind of order n. The prime on h,, indicates differentiation
with respect to its argument, and the prime after the sum indicates that a factor of 1/2
multiplies the term with j = 0. The boundary condition (7) is exact when N = co. A
direct time-dependent counterpart to (7) can be obtained through a convolution integral in
time resulting in a boundary condition that is non-local in both space and time dimensions.
Implementation in a computational method requires storage of all previous solutions up to
the current time step; a property that makes its use impractical for large-scale computations
over long time intervals. Note that this limitation of the time convoluted DtN operator is
also shared with the Kirchoff boundary integral representation.

In order to circumvent the difficulty of having to implement a temporal convolution
integral, time-dependent boundary conditions have been derived which replace the temporal
integral with local temporal derivatives; [5, 7]. Two alternative sequences were derived; the
first retains the nonlocal spatial integral of the DtN map (7), while replacing the time-
convolution with higher-order local time derivatives (local in time and nonlocal in space
version), while the second involves only time and spatial derivatives (local in time and local
in space version).

Local in Time and Non-Local in Space Version

In [5, 7] it is shown that by taking advantage of recurrence formulus for the Hankel functions
appearing in the impedance coefficients (9}, an alternative form of the truncated DtN map
(7) can be obtained which has an exact inverse Fourier transform. Using this procedure,
a family of high-order accurate and time-dependent non-reflecting boundary conditions are
obtained which share the property of the DtN map, i.e. the boundary conditions match the
first N spherical harmonics for outgoing waves on a spherical boundary I's,. For example,
for N = 2 the time-dependent counterpart to (7) is,

1 . '
Ksjv-om = czp,ﬂ-l-l—zfrm(Rzp,t+2cRp—Kf¢)sodI‘

1 2 1
- /r (et 2ehp—2K48) o1 a0 (10)

This time-dependent radiation boundary condition is perfectly absorbing for the first two
spherical wave harmonics of order » = 0 and n = 1. Formulas for higher-order operators
are reported in [5, 7). These boundary conditions retain the nonlocal spatial integral, yet
replace the time-convoluted DtN map with high-order local time derivatives. This form
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of time-dependent boundary condition has the advantage that when implemented in the
time-discontinuous finite element formulation, standard C°(T's, X I,) basis functions may
be used for both the space and time variables.

Local in Time and Local in Space Version

An alternate version is obtained by first localizing the acoustic impedance relation (7) in the
frequency domain, followed by an inverse Fourier transform. In [5, 7] it is shown that when
the solution on the boundary I's, contains only a finite number of spherical harmonics,
then such a transformation gives an exact time-dependent counterpart which is local in
both space & and time t. The transformation starts with the ideas of Givoli and Keller
[11], where a spatially local counterpart to the non-local DtN map was obtained in two-
dimensions. The extension to three-dimensions was given by Harari [12]. The development
proceeds by recognizing that the spherical harmonics can be interpreted as eigenfunctions
of the Laplace-Beltrami operator

19 9 1 8
=t 9 (npl Yy L O 11
T~ Sinpdp (smpago) + sin? p 662 (11)
Using this result, the DtN map (7) can be written in the following localized form:

N-1

von = Y Bu(k)(~Ar)™$ on To (12)

m=0
where the values of 8,(k) are obtained by solving the N x N linear algebraic system,

N-1
zﬂ(i") = Z [n(n + 1)]mﬂ'M(i°)’ n=0,1,---,N -1 (13)

m=0

Since this sequence follows directly from the truncated DtN map, these radiation boundary
operators annilate the first N spherical harmonics for the outgoing solution on a spherical
boundary I'y.

Local time-dependent counterparts to (12) have been obtained in [5, 7] using an inverse
Fourier transform procedure by first solving (13) for the coefficients 8, in terms of the
impedance coefficients 2z, and then using recurrence relations for the spherical Hankel func-
tions hy, to simplify the result. For example, for N = 2, (13) can be solved for fy = 7 and
B1 = (21 — 20)/2, leading to the result:

K
Kiv-n=cRpn+ Rps+ 2cp— EI%@ —Ar)¢ (14)

When applied on a spherical boundary T',, this operator acts as a high-order accurate local
boundary condition which is perfectly absorbing for the first two spherical wave harmonics
of orders n = 0 and n = 1. As the order N is increased, i.e. more terms are used in (12), the
resulting boundary conditions match more terms in the harmonic expansion for outgoing
waves, and a better approximation is obtained: see [5, 7] for expressions for the time-
dependent counterparts to (12) for N > 3. These boundary conditions are implemented in
the multi-field space-time finite element formulation as natural boundary conditions, i.e.,
they are enforced weakly in both time and space. We note that the operator defined in
(14) is identical to the second-order radiation boundary condition derived by Bayliss and
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Turkel in [13], after second-order radial derivatives are eliminated in favor of second-order
tangential derivatives through use of the wave equation in spherical coordinates. Thus, while
the boundary conditions derived by Bayliss and Turkel were obtained by annilating radial
terms in a multipole expansion, it is seen, that in fact, the first two boundary conditions
in the sequence share the property of the localized DtN, in that they match the first two
spherical harmonics for outgoing waves on a spherical boundary I's,. For higher-order
boundary conditions in the sequence beyond N > 3, the form of the boundary conditions
derived in [5, 7] differ from those derived in [13]. Because the time-discontinuous formulation
allows for the use of C°(I,) interpolations to represent the high-order time derivatives, it
is possible to implement these sequences of time-dependent absorbing boundary conditions
up to any order desired. However for higher-order operators extending beyond N > 3, the
lowest possible order of spatial continuity on the artificial boundary that can be achieved
after integration by parts is C¥~2. For these high-order operators a layer of boundary
elements adjacent to I'y,, possessing high-order tangential continuity on I'y, are needed, see
e.g. [14].

Time-Discontinuous Galerkin FE Formulation

The development of the space-time method proceeds by considering a partition of the time
interval, I =]0, T, of the form: 0 =t < t; < ... < ty = T, with I, =]tn,tn41[ and
At, = t,+1 — t,. Using this notation, Q4 = 9, X I,, and Q',fL = Q¢ x I, are the nth
space-time slabs for the structure and fluid respectively. For the nth space-time slab, the
spatial domain is subdivided into (), elements, and the interior of the et? element is
defined as Q. Figure 1 shows an illustration of two consecutive space-time slabs @n—1 and
Q.. Within each space-time element, the trial solution and weighting function are approx-
imated by polynomials in both # and t. These functions are assumed C%Q,) continuous
throughout each space-time slab, but are allowed to be discontinuous across the interfaces
of the slabs. The space of finite element basis functions for the multi-field representation
for the fluid are stated in terms of independent trial velocity potential ¢", and trial pressure
ph, variables:

Trial velocity potential:
N-1 .
= {Heteco(U D). o e PH@I)
n=0 " :
Trial pressure:
N-1
7 = {tprec(U e o . e P}
n=0 b

where P* denotes the space of kth-order polynomials and C° denotes the space of con-
tinuous functions. Similar collections of finite element basis functions for the approximation
of independent structural displacements u” and velocities vh are defined. An important
component in the success of the space-time method is the incorporation of discontinuous
temporal jump terms at each space-time slab interface; for a function w", the jump operator
is defined as,
[wht)] = wh(e,t) - vi(e, &)
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These jump operators weakly enforce initial conditions across time slabs and are crucial for
obtaining an unconditionally stable algorithm for unstructured space-time finite element
discretizations using high-order interpolations.

In the following, we shall use the following notation:

(ub,ubo, = [ sub-uban

a(ﬁu? ’ 'u.',‘)n,

/n Véuh . o(uh)d0

(62", ", = | sp* p" dQ

¥
6h h . tnt1 5h h d
(p ;p)Qn - A (P ) )ﬂ 12
soh ph _ t"+15h My d
" . = | (60", p")r dt

A delta refers to the variation of the function, i.e. the corresponding weighting function,
and the Ly norm is denoted ||¢||q = (¢, ¢)%,/2.

A Multi-field space-time variational equation

A multi-field space-time variational equation for the exterior structural acoustics problem
is obtained from a weighted residual of the governing equations and incorporates time-
discontinuous jump terms. For efficiency the method is applied in one space-time slab at
a time; data from the end of the previous slab are employed as initial conditions for the
current slab. The statement of the time-discontinuous Galerkin method for the multi-field
formulation is: Within each space-time slab, n = 0,1,...,N — 1; the objective is to find
U;‘ = {¢", p*} € T* x T} and UF := {ul, v}} € 8} x 8%, such that for all weighting
functions 6UJ’} := {6¢", 6p} € T x T}, and §UP := {§uh, svP} € St x Sk, the following
coupled variational equation is satisfied:
By(SU, UR)n + B.(6U? , UM + Boo(8U}, U)n

= (67", v n)ryy, — (608 -, M) iryy, (15)
with

B (U, UMn = (88", K" g — (Vo o%) g + (80", L;U})gs

+ (68"t K7 PP Da, + (6071, pslot (@) a,  (16)

B(SUP UM, = (80F, psil)g, + a(60], ub)oy + a(buf, LUMg,
+ (6oR(EE), palvb (), + a(fub(t), [ub (D)D), amn
in which v* = V¢h, §v* = V64", and

LfU? = pf’i?h + Vph, and EaU:‘ = i"? - 'v:l (18)
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In the above expressions, a tilde refers to integration over element interiors. By(-, ‘)n
and B,(:, -), are bilinear forms for the fluid and structure respectively. Fluid-structure
interaction is accomplished through the coupling operators defined on the fluid-structure
interface (Y;), := T; X I,. The operator B, incorporates the time-dependent radiation
boundary conditions on the fluid truncation boundary I's,. The definition of this operator
depends on the order of the spatial and/or temporal derivatives appearing in the radiation
boundary condition. For example, for the local second-order boundary condition (14) the
boundary operator is defined as, '

Bo(§U}, U = dy(88", 5")rooy, + (60", P")(x o)

do(67", )10, + do(86", " + 5" (x,),

+  da(8pM()), ﬂPh(tn)]])(rm)n + do(59" (1), Pf[[¢h(tn)]])(rm),,(19)
where
1 1
do(51’h, ¢h)(rm)" = ‘E(&Ph» ¢h)(-r°°)n + é—ﬁ(tspﬁp: ¢?p)(‘rw)n
1
+ ﬁ(@},cscz(‘P)ﬁ’b)uw)n (20)
G, PN rey, = (88, Pry (B8, P )r) (21)
. R . :
2 (68", ")z ye = 'K—f(‘sph,l’h)('rm)n (22)

In the above, integration-by-parts has been used to relax the continuity implied by the
second-order tangential derivatives appearing in Ar from C*(Ts) to C%(T's). The form
of the terms defined in (19) involving temporal jump operators evaluated on the boundary
I, can be inferred from (20) and (22). These consistent jump terms act to weakly enforce
continuity of U}‘ between space-time-slabs at the boundary I's,. These additional operators
are needed in order to ensure unconditional stability for the solution and are the crucial ele-
ment that enable generalization of the time-discontinuous space-time finite element method
to handle inbounded domains.

A system of algebraic equations is obtained by introducing space-time finite element
approximations for the independent variables:

¢Mz,t) = Ni(z,t)p, (z,8)eQ) (23)
Mz,1) = xsz,0p, (z,1)€Q] (24)
ub(z,t) = Ny(e,t)d, (z,t)€Q (25)
vz, t) = xiz,tle, (2,t)€Q; (26)

with their associated weighting (variational) parameters. In these expressions {INy, N,} €
Th x SF and {xy, xs} € T;* X SF are arrays defining global basis functions over a space-
time slab, and {¢, p} and {d, c} are global solution vectors. Inserting (23) — (26) into the
variational equation (15) leads to the coupled system of algebraic equations to be solved in
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sequence for each time interval I, =]t, , #,41[, n=0,1,---N - 1L

K:;[f' C'f 0 0 ') -ff:
C;y My A 0 p f
0 AT M oo Ve (=P (27)
0 o cT K, d 1

where K, , M, are global matrices emanating from the structural operator B,, and Ky, My
are global matrices emanating from the fluid operator By and Be.; Cy is the coupling
matrix relating acoustic pressure and velocity potential solution arrays; likewise C, is the
coupling matrix relating structural displacement and velocity degrees-of-freedom; A is the
fluid-structure coupling matrix defined as:

(25T
AT = / / x, nxy dl' dt (28)
Stability and Accuracy Results
The positive form of (27) follows directly from a stability (coercivity) result derived in [9]:

E(tny1) + Boo(Uf, U)n <E(t7), V Aty >0, (29)

and n = 0,1,...N — 1. Eq. (29) states that the computed total energy for the system

E(U}, UL) = £(U}) + &,(UY) (30)

WD) = 5@kl 1cz(uf,uf)n. (51)
1 _ 2

g = UK A + g I, (32)

plus the radiation energy absorbed through the artificial bou.ndary BM(U}' , U}‘) at the end
of a time step is always less than or equal to the total energy at the previous time step
for arbitrary step sizes. This result implies that the space-time formulation presented is
unconditionally stable.

For additional stability, local residuals of the governing differential equations in the form
of least-squares may be added to the Galerkin variational equations. Stabilized methods of
this type are referred to as Galerkin Least Squares (GLS) methods, and in the context of
transient wave propagation, may be designed to provide numerical dissipation of unresolved
high-frequencies without degrading the accuracy of the underlying Galerkin method. GLS
methods have also been used to improve the accuracy for the related reduced wave equation
(Helmholtz equation) governing time-harmonic acoustics in the frequency domain, [12, 15,
16].

If the finite element approximation for the acoustic pressure is selected such that, p
——pfth which implies that the residual £ UJ’,‘ = prqSh + Vp* =0, and snmla.rly if the
structural velocity is the time derivative of the structural displacement, v? = @, then the
multi-field formulation (15) specializes to the single-field formulation presented in [4, 5, 6].
This simplification occurs when the temporal order of approximation for p* and v” is one
order less than that used for ¢* and u?, respectively;i.e., {xs, xs} = {Ny, Ns:}. For the
single field formulation, quadratic interpolation in the time-dimension is required to resolve
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the second-order time derivatives appearing on ¢* and «” in the simplified variational
equation.

As a result of being a weighted residual based formulation, the method presented is
consistent in the sense that for a sufficiently smooth exact solution to the initial/boundary-
value problem (1) — (6), then the error is orthogonal with respect to the variational operator
(15). Consistency is necessary for maintaining optimal convergence rates for higher-order
basis functions. For example, for approximations of the form p* = —p fqlﬂh and v? = 4?, and
the time-discontinuous GLS formulation, it has been shown in [5] that the approximation
error E = {¢" — ¢, uh — u,}, converges at the rate

NEN < e(¢)h% " + c(u,) B2m? (33)

where h, = max{c;At, Az}, and hy = max{cAt, Az} are element mesh size parameters,
cr, is the dilatational wave speed in ), and c is the acoustic wave speed in Qf; Az and At
are maximum element diameters in space and time, respectively; c(u) and c(¢) are values
that are independent of h,, hy. The integers & and m are the finite element interpolation
orders for the fluid and structure respectively. The norm ||| E||| in which convergence is
measured emanates naturally from the coupled fluid-structure variational equation together
with additional least-squares operators. Equation (33) indicates that the error for the
coupled system is controlled by the convergence rates in both the structure and the fluid;
i.e., for an accurate solution to the coupled fluid-structure problem, discretizations for both
the structural domain and the fluid domain must be adequately resolved. Accuracy can be
increased in both space and time by simply increasing the order of the polynomial used in
the finite element approximation.

Respresentative Numerical Example

In Figure 2, results are presented for the transient scattering from a rigid cylinder with
conical-to-spherical end caps and a large length-to-diameter ratio. This example represents
a challenging problem where the multiple-scales involving the ratio of the wavelength to
cylinder diameter and cylinder length dimension play a critical role in the complexity of
the resulting scattered wave field. For this example, quadratic interpolation is used for the
approximation to ¢” and p* = —pqubh. On the truncation boundary I, a local second-
order non-reflecting boundary condition is applied. The numerical simulation starts with
an initial pulse at £ = 3. At ¢ = 6 the incident pulse has expanded and has just reached
the boundaries of the rigid cylinder. At the non-reflecting boundary I',, the wave front
is allowed to pass through the boundary with negligible reflection. As time progresses,
the wave has begun to reflect off the rigid boundary, creating a complicated backscattered
wave, that eventually passes through T, leaving a quiscent solution in its wake. This
example illustrates the high-order accuracy achieved by the space-time method for acoustic
scattering. Further details and a number of other examples may be found in [5, 7, 8].

Conclusions

The numerical sclution of many practical problems of transient structural acoustics and
fluid-solid interaction is still far from a reality. Imnovative methods, such as the space-
time finite elernent methods discussed in this paper are needed to advance the solution
of large-scale problems involving structures submerged in an infinite acoustic region. In
recent years, a time-discontinuous Galerkin formulation has evolved which is applicable to
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general coupled structural acoustics including high-order accurate non-reflecting boundary
conditions. The resulting finite element methods are unconditionally stable and allow for
unstructured meshes and high-order approximations in both space and time. In addition,
the space-time finite element approach provides a nice framework for developing space-time
adaptive schemes and subcyling schemes in which different time steps are used in different
elements. The attributes of the methods not possessed by in-place procedures indicate that
there is considerable potential for future applications in acoustics and wave propagation
problems in general.

References

[1] T.J.R. Hughes and G.M. Hulbert. Space-time finite element methods for elastodynamics: For-
mulations and error estimates. Comp. Methods in Applied Mech. Engng., 66:339-363, 1988.

[2] F. Shakib, T.J.R. Hughes, and Z. Johan. A new finite element formulation for computational
fluid dynamics, X: The compressible Euler and Navier-Stokes equations. Comp. Methods in
Applied Mech. Engng., 89:141-219, 1991.

[3] S.K. Aliabadi and T.E. Tezduyar. Space-time finite element computation of compressible flows

involving moving boundaries and interfaces. Technical Report 92/95, University of Minnesota
Supercomputer Institute Research Report, April 1992.

[4] L.L. Thompson and P.M. Pinsky. New space-time finite element methods for fluid-structure

interaction in exterior domains. In Computational Methods for Fluid/Siructure Interaction,
volume AMD-Vol. 178, pages 101-120. ASME, 1993.

[6] L.L. Thompson. Design and Analysis of Space-time and Galerkin Least-Squares Finite Element
Methods for Fluid-Structure Interaction in Ezterior Domains. PhD thesis, Stanford University,
April 1994.

[6] L.L. Thompson and P.M. Pinsky. A space-time finite element method for structural acoustics
in infinite domains, Part I: Formulation, stability, and convergence. Comp. Methods in Applied
Mech. Engng., Accepted: 1995.

[7] L.L. Thompson and P.M. Pinsky. A space-time finite element method for structural acoustics
in infinite domains, Part II: Exact time-dependent non-reflecting boundary conditions. Comp.
Methods in Applied Mech. Engng., Accepted: 1995.

[8] L.L. Thompson and P.M. Pinsky. A space-time finite element method for the exterior structural
acoustics problem: Time-dependent radiation boundary conditions in two spatial dimensions.
Int. J. Numer. Methods Engng., Accepted: 1995.

[9] L.L. Thompson. A multi-field space-time finite element method for structural acoustics. In
Proceedings of the symposium on acoustics of submerged structures and transduction systems.
ASME 15th Biennial Conference on Mechanical Vibration and Noise, Sept. 17-21, Boston,
Mass., 1995.

[10] J.B. Keller and D. Givoli. Exact non-reflecting boundary conditions. J. Comput. Phys.,
82(1):172-192, 1989.

[11] D. Givoli and J.B. Keller. Non-reflecting boundary conditions for elastic waves. Wave Motion,
12:261-279, 1990.

[12] 1. Harari. Computational Methods for Problems of Acoustics with Particular Reference to Ea-
terior Domains. PhD thesis, Stanford University, 1991.

[13] A. Bayliss and E. Turkel. Radiation boundary conditions for wave-like equations. Commun.
Pure Appl. Math., 33:707-725, 1980.

[14] D. Givoli and J.B. Keller. Special finite elements for use with high-order boundary conditions.
Comp. Methods in Applied Mech. Engng., 119:199-213, 1994,

[15] L.L. Thompson and P.M. Pinsky. A multi-dimensional galerkin least-squares finite element
method for time-harmonic wave propagation. In R. Kleinman et. al., editor, Second Interna-
gilﬁlt\l'/} Cizz];erence on Mathematical and Numerical Aspects of Wave Propagation, pages 444451,

, .

[16] L.L. Thompson and P.M. Pinsky. A Galerkin least squares finite element method for the two-
dimensional Helmholtz equation. Int. J. Numer. Methods Engng., 38:371-397, 1995.



234

Figure 2: Scattering from a rigid cylinder due to a point source. Solution contours shown
at the end of the initial pulse at ¢ = 3 and later times ¢ = 6,9,12,15,18.



