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ABSTRACT

This paper presents a stability analysis of a finite, elastic plate in the presence of
mean flow. The edges of the plate are assumed to be clamped to an infinite, rigid baffle.
The effect of structural nonlinearities induced by inplane forces and shearing forces due
to stretching of plate bending motion is considered. The plate flexural displacement is
determined by the Galerkin’s method. The critical mean flow speeds at which local insta-
bilities may occur are solved analytically. The mechanisms that trigger the onset of the
local instabilities are uncovered. The effect of mean flow and that of structural nonlinear-
ities on the plate stabilities are examined. Finally, numerical examples of transition from
stable to locally unstable vibration as the mean flow speed increases are demonstrated.
Numerical results show that while the overall amplitude of the plate flexural displacement
may be bounded when the mean flow speed exceeds the critical ones, plate vibration may
be locally unstable, jumping from one equilibrium position to another. This jumping may
be completely random, and plate vibration may seem to be totally chaotic.
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1. INTRODUCTION

There have been many research activities on the stability analysis of an elastic plate
in subsonic and supersonic flows.1 = 6 Most of the studies in subsonic mean flow, however,

are confined to a linear Sﬁstem whose response may grow unboundedly in time, known
as absolute instability, when the mean flow speed exceeds certain critical value. The

first numerical example of absolute instability for an infinite plate was shown by Brazier-

Smith and Scott.? Crighton and Oswell8 proved analytically the existence of absolute
instability for an infinite plate in mean flow. The critical mean flow speed beyond which

absolute instability would occur was shown8 to depend on the fluid/structure densities’
and compressional wave speeds’ ratios only. Consequently, absolute instability may occur
for an infinite steel plate in water when the mean flow speed exceeds 14.9 m/s, or for
the same plate in the air when the mean flow speed exceeds only 0.02 m/s, disregard the
thickness of the plate. These are quite startling results. Yet, the mechanisms that trigger
absolute instability are never explained.

Clearly, in reality there are no infinite plates and the amplitudes of plate vibration
will never grow unboundedly. Hence in this paper we consider a finite, elastic plate. In
particular, we include the efg;ct of structural nonlinearities induced by inplane forces and
shearing forces due to stretching of the plate bending motion. The objective is to gain a
better understanding of the physics involved in this complex fluid-structure interaction.
Specifically, we want to know how and when plate flexural vibration may become unstable
in the presence of mean flow, how the plate aspect ratio and thickness may affect its
ins%a‘{)ihty, and finally, what the role of the viscous damping ratio may play in the plate
stability.

Section 2 of this paper presents the equation governing the plate flexural vibration.
The acoustic pressure acting on the plate surface i1s determined by a three-dimensional
temporal Green’s function. The plate flexural displacement is obtained bi the Galerkin’s
method in section 3. The critical mean flow s eeé)s at which local instabilities may occur
are solved analytically using the Routh’s stability criterion in section 4. The effect of mean
flow speeds a.ng that of structural nonlinearities on local instabilities are examined at each
equilibrium position for a specific example that involves two longitudinal and one lateral
modes. Numerical examples that indicate transition from stable to unstable vibration as
the mean flow speed increases are demonstrated in section 5. Conclusions are drawn in
section 6.

2. PLATE FLEXURAL VIBRATION EQUATION

Consider a rectangular plate of length L and width b that is clamped to an infinite,
rigid baffle. The plate 1s in contact with some fluid on one side (z > 0), and vacuum on
i(:ihe other side. e fluid is assumed to move at a constant, uniform speed in the z > 0

irection.

In deriving the equation governing the plate flexural vibration, we take into account
the effect of viscous damping and that of structural nonlinearities induced by inplane forces
and shearing forces due to stretching of plate bending motion. Since we are interested
in plate free vibrational motion, the only external forcing will be the radiated acoustic
pressure that acts back to the plate surface. Accordingly, the plate flexural vibration

equation can be written as9
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where w is the plate flexural deflection, D = Eh3/12/(1—1?), is the plate bending rigidity,
h, pp, E, v, and d are the plate’s thickness, density, Young’s modulus, Poisson ratio, and
viscous damping coefficient, respectively, N; Ny, and N, are inplane forces and shearing

forces due to stretching of plate bending motion

En [P c':hv(a:,g,/,t)]2
Nz = 2L J, [ Oz dz, (22)
_Eh b aw(a:,y,t)]2
Eh [* ¥ Bw(z,y,t) Buw(z,y,t)
New =52 J, /0 FE 3y W (2¢)

The surface pressure on the right side of Eq.(1) is related the velocity potential
function ¢10 ‘

7] 0
p(zi Y2, t) = =po [E + Ua;] ¢(:c,y,z,t), (3)
where pg is the density of fiuid. The potential function can be written asll, 12
L pb K] 9
szt = [ [ oo (Z+Uam ) wlooinnr)| dostter (@

where Gy is defined as

1
T aVi- MR a2

Go(Fl0) = (5)

where R? = (y — yo)? + 2%, u = (z — 7,)(1 — M?)~1/2, M is the Mach number of the
mean flow speed, the symbol [ ], in Eq. (4) implies that the quantities inside the square
brackets are to be evaluated at the retarded time 7 = ¢t — At, here At is given by

VvR? + 4% — Mu
eV1-M2
For a heavy fluid medium such as water and for a small value of R compared with the

wavelength of the emitted sound, the time delay At can be omitted to in order to simplify
the numerical computations.

At = (6)

Substituting Eq. (4) into (3) yields,

(m Ot)-_— —-+U— //bG(Tlr) -—-+U-—-—- w(z T)] dz,d
pz,y,Y, Po 9& a 0 Jo 0 [ a 9 . 01Yo, 0QYo-
(i)
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To alleviate the singularity difficulty caused by taking the derivative of Go¢ with
respect to z in Eq. (7), we replace 8G(7|7,)/0z by —08G(r]7,)/0z,, and use the chain
rule to transfer the derivative with respect to z, to w(z,,y,,7). Further, for a clamped
plate, the displacement and slope at the edges are identically zero. Thus, without regard
to the time delay we can rewrite Eq. (7) as

p(z,¥,0,t) = —po / / Go(717) —+U——) W(Z0, Yo, t)dTodYo- (8)
0o Jo 3t 3:):0

3. PLATE FLEXURAL DISPLACEMENT
Substituting Eq. (8) into (1) yields a differential, integral equation that governs the
plate flexural vibrational motion. Because of the complexities involved in this equation,
analytic solution cannot be obtained. Hence, we use the Galerkin’s method to obtain an

approximate solution. Namely, we expand the plate flexural displacement in terms of the
normal modes in that satisfy the prescribed boundary conditions

w(z,y,t) = {(W(2)}TICHHW ()}, (9)
where {W(z)} and {W(y)} represent N longitudinal and M lateral normal modes, respec-
tively, a superscription T in Eq. (9) indicates a transposition, and {C(t)] stand for the
amplitudes of coupling between the lateral and the longitudinal modes.

For the clamped boundary conditions, Wi(z) and W;(y) are given by

) o oin (52) i ()] o (222) —conh (22)], 00
i) = o i (22) i (2] 5 o (22) ot (3], o

where o; represents the ith modal ratio

sin A\; + sinh \;

%= o A; —cosh \;’ (11)
where J; is the #th eigenvalue determined by
cos \; cosh A = 1. (12)

Note that the normal modes {W(z)} and {W(y)} are orthogonal to each other

L for k=1

L
/ Wi(2)Wi(e)dz = { (13)
0 0 for k#l



259

b b for ¢ =yj;
/ Wi(y)W;(y)dy = { : (13a)
0 0 for i#j.

However, the products of {W(z)} and its derivatives are not necessarily orthogonal.

Substituting Egs. (10) into (1), multiplying the resultant equation by {W(z)}, inte-
grating over = from 0 to L, and then multiplying by {W(y)} and integrating over y from
0 to b, we obtain

[@1ICE] + [YICE + @] - [ElC@] =0, (14)

where [®], [¥], and [x] represent the effects of mass, damping, stiffness per unit area of
the plate, respectively, and [Z] stand for the effect of structural nonlinearities and contain

quadratic powers of the unknown coefficients [C()]. The elements of these matrices can
be written in the following general forms

e 0
Briij = 6irbji + meﬁﬁj, (15a)
_ ' KVE o)
‘I’klij - £6ik6jl + Wmekuj, (15b)
A 2 n¢?
— |4 wy N T L - ¢
Xkiij = [/\i + ,‘75:] birbjt + ,’756*0:1 + zﬂ,m@um (15¢)

Ektij = 6(1 — v?)Cpq(¥)Crs(f) [0prbir Bitgs + 0gs0i1Bikpr — YprYaavirvit],  (15d)
where 6;; represent the Kronecker delta.

Note that the second term on the right side of Eq. (15a) represents the effect of added
mass due to acoustic radiation; the second term on the right side of Eq. (15b) represents
the effect of added damping induced by acoustic radiation in the presence of mean flow;
the second and the third terms on the right side of Eq. ( 1502 represent the effect of added
stiffness due to acoustic radiation and mean flow, respectively; and the terms on the right
side of Eq. (15d) represent the effect of added stiffness due to structural nonlinearities.

In Egs. SS), the subscripts ¢, k,p,7r=1,2,---N and j,l,¢q,8=1,2,---M, and a
bar implies a dimensionless quantity ‘

= _Ci ;_, [ D =y @Te) (1Y)
Cl] - h y t ""t pphL4$ (z7z0) - L bl (y7 yo) - b ) (16(1)

and the parameters 7, &, p, and ¢ in Eqgs. (15) are given by

I S IR S /s
W—Lv £'-d Dpph’ l“—'pph) C_U D * (lsb)
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Physically, the quantities 7, £, ¢4, and ¢ reflect the effects of the plate aspect ratio, damping
ratio, ﬂmc{/ structure density ratio, and dimensionless mean flow speed, respectively.

The quantities 6, v, 8, and © in Egs. (15) are defined as follows

L 162W,'(5:) . N

O = /0 o Wi(2)Wi(3)dz, (17a)

7ik=/(; aiz;a_ff-)-Wk(f)df, (170)
1

B = [ W@W@WDWDS, (17¢)

SN o NN LY b %Wi(io)wj(ﬂo) o

O '/o /o W"(”)Wy)dzdy/o/o Y CEEn e N

4. STABILITY ANALYSIS

In this section we present a stability analysis of the system described by the ma-
trix equation (14). For simplicity, let us consider only one lateral and two longitudinal

modes. Thus, Eq. (14) reduces to a set of two simultaneous nonlinear ordinary differential
equations (NODEs),

(1 + -;Lf—r-@ﬂ)n) Cu®+ £Cu(f) + nc;/ﬁeg)zlézl(f)
62 A4 2 —
+ (X{‘ + 27;71 + ;l% + %%9521)11) Cu(?)
+6(1—v%) (6:1CY +62:CF) B1111611Ca2 =0,  (18a)

(1 + %98)21) Caa(F) +Cn(f) - i%ﬁeﬁ)zxén(f)

6116 At 2 =
+(ue2tge e B Ko ) 6

+6(1-2v%) (6uCH + 022C2,) Br1111022C22 = 0. (18b)

Equations (18) can be further simplified by introducing the following dimensionless
parameters

gy =1+ g—:ﬁeﬂ)n, (19a)

agg =1+ %6%1, (19%)
02, A, n¢® L

ay =+ 277151- + n—i + E;GL)H, (19¢)



6116 b} ¢?
4 11922 1,7 (2)
az =M+ 27" + ‘T']Z + -2;.'92121:

1¢VE o)

p 1121

1
ay=6(1-1?%) (1 + ;’z) P11,
3
as =6(1-1%) (,31111911922 + n—4ﬁ11229§1) )
1
as =6(1—1?) (ﬁunegz + n—4,32222‘9§2) )

and new variables

Y, =Cu(®),
Y, = 511(5),
Ya = Cu(?),
Yy = éZI(t_)-
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(194)
(19¢)
(19f)
(199)

(19h)

(20a)
(200)
(20c)
(20e)

Substituting Eqgs. (19) and (20) into (18) yields a set of four first-order NODEs,

Yl = YZ’

: ay 3 as a4 3 05 2

Va=-t¥i—- =Y, - =Y, - ¥} - 1Y,
Qg1 Qo1 Qo1 Qo1 Qo1

YE.’o = Y47

. as ¢ a3 as a6 3

Vi=——2V; - Yi+ —Y; - —V2¥; - —V;.
Qo2 Qo2 Qo2 Qo2 Qo2

(21a)
(210)
(21¢)
(21d)

Equation (21) allows us to use the stability theory13 to examine the local instabilities
around the fixed points or equilibrium positions determined by setting the right side of

Eq. (21) to zero.

Y2 =0,
(01 + asY? + a5Yy) Y1 =0,
Y, =0,

(02 + asY? + asY?) Y3 = 0.

The possible solutions to Eqs. (22) are given by

(22a)
(22b)
(22¢)
(22d)

(23a)
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hi=ta=¥i=0, Fi=s%/-2, (235)
Qy

}"1=}"2=}"4=0, _3=ﬂ: —9[—2-, (236)
Qg

) Y, y, Q05 — Qi1 Qg & Q105 — 0204
Y, =Y, =0, Yi==%/—, Vi==—F, (234)
Q406 — Op Q4 — Oy

where the symbol ¥ implies a fixed point or an equilibrium position. Note that solutions
given by Eqs. (23) must be real in order for the equilibrium position to be meaningful.

Clearly, the equilibrium position given by Eq. (23a) is the plate undeformed flat
position, and the rest are induced by structural nonlinearities. Equations (23) indicate
that the plate may vibrate either around its flat equilibrium or around other equilibrium
positions.

The stabilities of the plate can now be examined at the equilibrium positions given
by Eq. (23). Taking the derivative of Eq. (22) with respect to time, we obtain

JY)N{¥} =0, (24)

where J(Y') is the Jacobian matrix given by

i 0 1 0 0 7
_ a+3asYi4as¥? ¢ _2a511Y; _ a3
Qo1 (238 o1 Qo1
JY) = . (25)
0 0 0 1
_2aNY ag  _oatas¥43ae¥y &
L o2 ag2 ag2 aoz ~

Next, we assume a form of solution to Eq. (24)
{v} = {[¥l}e", (26)

where A represents the eigenvalue of the system and {|Y|} stands for the amplitude of
{r}.

Substituting Eq. (26) into (24) leads to the characteristic equation

4
> A" =0, (27)

n=0
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where 0, are given by

Qo =T — 403Y7'YY, (28a)
Q =¢(T1+T2), (28b)
Q; = £ + o} + anT'2 + @y, (28¢)
Qs = € (a1 + @02), (284)
4 = ag1002, (28¢)
where
Ty = o1 +3a Y + asY7, (29a)
T2 = az + a5Y7 + 3asY7. (29b)

The stability theorem for linear systemsl4 states that a system is stable if and only -
of the roots of the characteristics equation all lie in the left-half A plane, excluding the
imaginary axis. This theorem is also applicable for the system under consideration. One
way of determining whether the roots of the polynomial equation (27) all lie in the left-half
A plane without actually solving for them is through the Routh’s algorithm,14 which yields
the following inequalities

Qg >0, Q. >0, Qs >0, Q3 >0, Q4>0, (300)
Q203 — Q104 >0, (30b)
Q] (Qz - 9194) = QoQ§ > 0. (300)

Substituting Eqs. (28) into (30) then leads to the following conditions
6 >0, ag > 0, age > 0, I'y>0, Ty >0, (31)
which must all be satisfied in order for the system defined by Eq. (21) to be stable.

Equation (31) may shed some light on the mechanisms involved in the local instabil-
ities of a fluid-loaded plate in mean flow.

e The first inequality in Eq. (31) requires that the damping ratio { be positive. This
condition is automatically satisfied because the damping coefficient d is positive. In
the special case of an undamped system, £ = 0, the roots of the polynomial equation
may lie on the imaginary axis and thé system may be marginally stable if all other
conditions in Eq. (31) are satisfied.

e The second and the third inequalities in Eq. (31) require that ag; and ap; be
positive. From Eqgs. (19), we see that these terms consist of the plate aspect ratio, the
fluid /structure density ratio, and the added mass due to acoustic radiation. All these
quantities are positive. Therefore these two conditions are satisfied automatically.
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e The last two inequalities in Eq. (31) require both 'y and I'; to be positive. Substi-
tutin%the plate’s undeformed equilibrium position given by Eq. ﬁ(23&) into (29), we
have 'y = a; and I'; = a3. The quantities ay,; represent the effect of the stiffness
and that of the added stiffness due to acoustic radiation in the presence of mean
flow [see Eqs. (19¢) and (19d)], respectively. The former is positive, but the latter is

negative, because @,321)11 and 9(2;)21 are negative [see Eq. (17d)]. Without mean flow,
the added stiffness is xdeni:ica.l'f{l zero. Hence a; and a, are always positive, which
means I'; > 0 and I'; > 0 and the plate is stable around its undeformed equiiibrium
position. When there is mean flow and when the mean flow speed is low, the effect
of the added stiffness is small. Therefore a; and «; are positive, and the plate is still
stable. However, the values of o and a, decrease with the increase of the mean flow
speed. When the mean flow speed exceeds certain critical value such that the added
stiffness overwhelms the plate stiffness, then a; or a; may be negative and the plate
may become locally unstable.

e The quantities a; and ap decrease quadratically with the mean flow speed [see Eqs.
(19c)ba.nd (19d)]. Hence, the higher the mean flow speed, the more unstable the plate
may be.

e The plate aspect ratio and the plate’s length/thickness ratio have a direct effect on
the overall stiffness. The larger the plate aspect ratio and the plate’s length{thickness
rat‘iao, the smaller the plate overall stiffness, and the more unstable the plate tends
to be.

e The critical mean flow speed can be determined by setting I'; and I'; to zero, which
is equivalent to setting @; and a2 to zero. From Egs. (19c) and (19d), we obtain

2D é 922 A4
Uer,l = J—W (/\3 + 2—1#—- + # . (32a)
PoT 2121
2rD 62, A
Uor = \[__Ls'@(T) (,\;‘ + 2—0% + -%), (32b)
Pon 1111 n

o Suppose that uc,1 < Ucr2. Then if U = uc.;, we have a3 > 0 and oy = 0.
In this case the equilibrium position still remains unchanged, but I'1 = a3 >0
and I'; = a; = 0. The last inequality in Eq. (31) is not satisfied. So the plate
at its original equilibrium position may start to become locally unstable.

o When ucry < U < Uerg, then a; > 0 and @3 < 0. In this case, a new
equilibrium position given bﬁ qu (23c) emerges in addition to the original
undeformed one. However, the plate at the original equilibrium position may
by locally unstable because I'y = a; > 0 and I'; = @ < 0, while stable at the
new equilibrium position since I'1 = a3 — azas Jag > 0 and I'z = —2a2 > 0.

o When U = ucr,2, we have a; = 0 and a2 < 0. In this case, the equilibrium
position given by Eq. (}2130) co-exists with the original undeformed equilibrium
position. Once again, the plate may be locally unstable at the original equilib-
rium gosition because I'; = a3 = 0 and 'y = a3 < 0, but stable at the new

equilibrium position since I'y = —azas/ag > 0 and I'; = —2a2 > 0.
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o When the mean flow speed exceeds both critical values, U > ucr 3 and U > uep2,
then both a; and a3 will be negative., In this case, there may be up to four
equilibrium positions given by Eqgs. (23). However, I'; and I'; cannot be positive
simultaneously at all of these equilibrium positions. Therefore the plate may
be locally unstable everywhere.

e The local instabilities are controlled by the structural nonlinearities,. Without the
inclusion of structural nonlinearities, there is only one equilibrium position, i.e., the
undeformed flat position. Under this condition, the amplitude of plate vibration
would grow exponentially in time when the mean flow speed exceeds the critical val-
ues, known as absolute instability. With the inclusion of the structural nonlinearities,
the overall amplitude of vibration is bounded. However, plate vibration may be lo-
cally unstable, jumping from one equilibrium position to another. In particular, this
jumping may be random and plate vibration may seem to be chaotic.

5. NUMERICAL EXAMPLES

In the preceding section, we have seen that a finite, baffled elastic plate may become
locally unstable when there is mean flow. The instabilities occur whenever the overall
stiffness becomes negative. In this section, we show numerical results of a finite, baffled
elastic plate in the presence of mean flow. In particular, we demonstrate transition of plate
vibration from stable to locally unstable as the mean flow speed increases.

First, we define the dimensionless critical mean flow speed. From Egs. (16b) and
(32), we have

4
o [ (2 ), 90
7792121 n n
o 02 b
=,[-— ,\4+2—£+-l) 33b
e =gy, (2530 -

Similarly, the dimensionless mean flow speed can be written as

=P 5E - (2) 2 (5) () *

where ¢, = /E / p,?il — v?) is the compressional wave speed of the plate, 15 and the
commonly accepted value of ¢, for a steel plate is 5400 (m/s)

As an example, we consider a steel plate in contact with water on one side and vacuum
on the other side. The plate has a density p, = 7800 (kg/m®), a length L = 2.5 (m), a
width b = 1.25 (m), and a thickness kb = 0.003 (m). Accordingly, the plate aspect ratio
n = 0.5, the plate length/thickness ratio L/h = 833.3, the fluid/structure density ratio
¢ = 106.84, and the dimensionless mean flow speed ¢ = 8288.36M. For most engineering
applications, the mean flow Mach number M 1is typically in the range of 0 to 0.01. The
critical dimensionless mean flow speeds are found to be (¢ry = 57.97 and (cr2 = 74.23
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based on Eqs. (33). The clamped plate is assumed to have an initial displacement with
Y3(0) = Y3(0) = 0.05 and Y3(0) = 1’4&(‘)) = 0. As in all nonlinear systems, the responses
are sensitive to the initial conditions. The set of initial conditions selected above has been
found to be one of the best to depict local instabilities as the mean flow speed increases.

The plate flexural displacement is obtained by solving a set of NODEs (21) using

the Gear’s method.16 Figure 1 shows the amplitude of dimensionless displacement at
F = 0.75 and § = 0.5 versus dimensionless time ¢, with a zero damping ratio { = 0,
and a dimensionless mean flow speed { = 41.44. Since {( < (cr1 and (.2, the plate is
stable around its original undeformed equilibrium position. Numerical results show that
two longitudinal modes are coupled together and the effect of structural nonlinearities is
obvious. Next, we increase the dimensionless mean flow speed to ¢ = 66.31. Since (.1 <
¢ < {cr,2, the plate becomes locally unstable around its original equilibrium position, and
nevertheless stable around a new equilibrium position (see Fig. 2). Finally, we set the
dimensionless mean flow speed at { = 82.88, which is larger than both {.r1 and (cr2.
Under this condition, the plate has three equilibrium positions, but none of them are
unstable. In particular, plate vibration is observed to jump from one equilibrium position
to another. Since this jump is completely random, plate vibration seems to be totally
chaotic (see Fig. 3).

6. CONCLUSIONS

The mechanism of local instabilities of a finite, elastic plate can be attributable to the
added stiffness induced by acoustic radiation in mean flow. When there is no mean flow,
the stiffness is positive and the plate is always stable around its undeformed equilibrium
position. When there is mean flow and when the mean flow speed is very low, the effect
of added stiffness due to acoustic radiation in mean flow is small and the plate overall
stiffness is positive. Hence the plate is still stable. However, the added stiffness increases
quadratically with the mean flow speed. When the mean flow speed is large enough so that
the overall stiffness becomes negative, then the plate may be locally unstable around its
original undeformed equilibrium position, and stable at a different equilibrium position.
When the mean flow speed exceeds all the critical values, plate vibration may become
locally unstable at all equilibrium positions. In particular, plate vibration may jump from
one equilibrium position to another. Since this jump is completely random, plate vibration
may seem to be totally chaotic.

The local instabilities described above are controlled by structural nonlinearities.
Without the inclusion of structural nonlinearities, the plate may have only one equilibrium
position, i.e., its undeformed one. The amplitude of plate vibration would then grow
unboundedly in time when the mean flow speed exceeds a critical value, known as absolute
instability,. With the inclusion of structural nonlinearities, the plate may have more than
one equilibrium positions when the mean flow speed exceeds the critical ones. As a result,
plate vibration may jump from one equilibrium position to another. The amplitude of
plate vibration, nevertheless, is bounded.
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