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The indirect estimation of environmental parameters is notoriously difficult. A new approach
involves Matched Field Processing (a signal processing technique applied to acoustic array data)
which in combination with careful experimental design has the potential to estimate such properties
as sound-speed profiles (in the water and in'the bottom), layer thicknesses and densities, number
of layers, etc. In particular, the technique may be capable of estimating those emvironmental
parameters to which the acoustic field is most sensitive. However, each environmental situation
requires careful design. Issues which need to be resolved for a given scenario include: what are
the optimal frequencies for processing, what are the optimal array and source configurations, what
properties affect the acoustic fields and what are their associated sensitivities. Most importantly,
we are finding that critical components of the overall problem are: (1) the optimization process
which must search through tens of thousands of parameter combinations to find the “best” match;
(2) the potential non-uniqueness of the “best” match, i.e., there seem to be families of solutions
which provide comparable optimizing fits to data. Present efforts are focused on these questions
as applied to simulated and experimental data.

1. Introduction

Shallow water scenarios presently provide an important focus for much underwater acoustic
research. As a consequence there is now a desperate need for accurate and fast propaga-
tion models to describe acoustic behavior in difficult-to-model, complicated shallow water
conditions. Factors such as sediment thicknesses and sound-speeds have become critical
model inputs but are nearly impossible to obtain by direct measurements, particularly in
highly variable regions where many samples are needed. Thus, intense efforts are being
made to develop indirect, remote sensing techniques which involve the solution of inverse
problems, i.e., problems for which one must infer the unknown model input parameters
from the observed model output.

Many inverse techniques to determine bottom properties are currently being pursued (see
Frisk [1990]), and the newest involve the use of Matched Field Processing (MFP) which in-
volves both the amplitude and phase of a signal measured along an array of receivers (see
Tolstoy [1993] for general details on MFP). The MFP techniques often involve simple least
squares fits of model predictions to data and which are subsequently combined with com-
putationally intense, random number based methods such as simulated annealing (Lindsay
and Chapman [1993]; Dosso et al. [1993]; Collins et al. [1992]; Collins and Kuperman
[1991]) and/or genetic algorithms (Gingras and Gerstoft [1995]; Gerstoft [1994a,b, 1995]).
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The approach to be discussed in this paper is not a least squares fit nor is it random-
number based. It is based on the high resolution non-linear minimum-variance (MV) proces-
sor plus a global, directed search through parameter space. The MV processor was selected
primarily because the standard Linear Processor does not show sufficient sensitivity to the
parameters.

2. The Test Case: Experimental Data

In this paper we will analyze a simple scenario: no range or azimuthal variability, a single
source, a single vertical array where we will subsequently estimate shallow water bottom
parameters for ezperimental test data. We shall use the KRAKEN normal mode model
(Jensen et al. [1994]) as our propagation component.

Consider a shallow water environment consisting of a thin sediment layer (thickness fseq)
with a linear sound-speed profile (varying from ¢; at the top of the sediment layer to c;
at the bottom of the sediment layer) with constant density p; and which overlays another
sediment layer (thickness 100m) with linear sound-speed profile (varying from c; pot at the
top to ¢z 40t at the bottom of the layer) with constant density p;. These two layers overlay
a non-elastic half space with a constant sound-speed ¢g3,¢ and density p;. Nominal bottom
parameter values are as indicated in Fig. 1 and Table 1 (such values were suggested in
Jensen [1974]).

parameter value

hsed 3.5m
hwater 114m

€1 bot 1600m/s
€2 bot 1600m/s
c1 1490m/s
es 1490m/s
Tsou 12.1km
Zsou 20m

P1 1.5

P2 1.8
Azgrr 0.0m

Table 1. Nominal parameter values.

This scenario corresponds to a subset of Mediterranean Sea experimental test data col-
lected in October 1993 where the measured water column sound-speed profile resulted in
downward refracting energy. For this sea test a 64m array (with a data sampling rate of
1000 per s, a window of 60 to 420Hz) was deployed and moored to the bottom with nominal
coordinates determined by GPS positioning while a second ship deployed 25 shots over the
side at various ranges. The full array consisted of 64 phones at non-uniform intervals from
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35.72m depth to 99.72m. We will begin processing with the 100.6Hz component of the signal
(composed of approximately 5 propagating modes for the nominal parameter values) and
will only consider a subarray of data consisting of 9 phones at 8m intervals (approximately
half-wavelength intervals at 100Hz). We note that if a non-uniformly spaced array were to
be used, the results would be biased toward those parameters most strongly affecting the
field measured on the most densely packed phones. In the results to follow we examine only
a single shot corresponding to a source at a nominal range of 12.1km (uncertain to within
+200m), depth of 20m (uncertain to within +10m) and will be using 1.024s of those data.

First, we assume the nominal parameter values and subsequently compare the model
predictions for a variety of source ranges and depths with the measured data. The result
is shown in Fig. 2 as an ambiguity surface (AMS) for the MV processor where we find
that the best correlation between data and model occurs for a source predicted to be at
12.66km, 30.0m. This position is not “properly” located (it should be within the range and
depth limits indicated by the error bars centered on the nominal position of 12.1km, 20m).
Moreover, the peak value of 0.048 out of a maximum value of 1.00 is not very encouraging.
Clearly, there is a significant mismatch between model predictions and the measured data.

parameter interval increment no. of values
heed [0.5,9.5] (m) 0.25m 37
hewater [110,120] (m) 0.25m 41
C1,bot [1550,1650] (m/s) 2.0m/s 51
€2,bot [1550,1680] (m/s) 5.0m/s 27
1 [1450,1650] (m/s) 5.0m/s 41
¢z [1450,1650] (m/s) 5.0m/s 41
Poou [11.9,12.3] (km) =~ 0.05km 9
Zson [10,30] (m) 5m 5
o1 [1.0,2.0] 0.1 11
P2 [1.0,2.5] 0.1 16
Azapr [-3.5,3.5] (m) 0.5 15

Table 2. Initial parameter search values, their search intervals, increments,
and number of candidates.

Recent work has resulted in much improved predictions after searching the parameter
space shown in Table 2 where we also include a possible array shift in depth Az,.,. In
particular, we have found that values shown in Table 3 result in the AMS shown in Fig.
2 where the source is now well located near the nominal/measured position and the peak
value is 0.48.

At this point we ask a number of important questions:

1. How nasty is the parameter space through which we have been searching?
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Figure 1: Nominal geoacoustic parameters and uniform subarray parameters for a shallow
water test case in the Mediterranean north of Elba.

2. What can we do to improve our search, e.g., to flatten out troublesome sidelobes?

3. How accurate is our “solution”? That is, how much do we trust our final solution
relative to the physical reality? Is our “solution” unique?

4. When do we stop looking for a better solution?

To address these questions, we shall now examine simulated data over which we have
total control and knowledge.

3. The Test Case: Simulated Data

Let us consider “data” generated by the KRAKEN model at 100.6Hz using the improved
parameters of Table 3. In Fig. 4 we see an AMS showing the MV processor sensitivity to
paraml=cj pot (varying only from 1590m/s to 1620m/s) and param2=h,. (varying from
0.5m to 9.5m). The peak=1.00 occurs at the true values ¢ 5,:=1601m/s, hseq=2.6m with
the other parameters fixed at their true values. We note that the AMS shows many ripples
and local maxima, i.e., sidelobes. While these sidelobes are not major peaks, they will
increase the computational difficulty in finding the true global maximum. In an effort to
smooth out these ripples let us consider a broadband approach. In particular, let us first
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Figure 2: AMS for test data at 100.6Hz using nominal geoacoustic parameters. Source is
mislocated at 12.66km, 30.0m, off from nominal values of 12.1+0.2km, 20+10m with peak
value of 0.048.

look at the AMSs for a selection of frequencies: 75.6Hz, 125.6Hz and 150.6Hz as seen in
Figs. 5a,b,c. We note that at the higher frequencies we have more ripples although they
are generally with lower peak values. Moreover, the global maximum is narrower in width.
If we add the four frequencies (75.6, 100.6, 125.6, 150.6Hz) we arrive at Fig. 5d where the
sidelobes are down from the single 100.6Hz AMS. However, the remaining global maximum
will be hard to find since it is now narrower and surrounded by moie ripples. In general
we find that merely increasing frequency may make the optimization problem harder. This
suggests a closer look at the lower frequencies.

In Fig.6 we show AMSs for 50.6Hz, 55.6Hz, and a sum over six frequencies (50.6, 55.6
60.6, 65.6, 70.6, 75.6Hz). We see that the final sum is an improvement over the individual
components including those at 75.6Hz (Fig. 5a) and at 100.6Hz (Fig. 4). This suggests
that lower frequencies may be optimal for a broadband approach and that this broadband
approach may result in improved optimization searches.

The next major issue becomes: how accurate and trustworthy is a “solution”. While
searching through the parameter space a number of major sidelobes turned up, i.e., com-
binations of parameter values which produce nearly identical acoustic fields to that of the
simulated data. As an example, consider the values shown in Table 4. In Fig. 7 we see
AMSs at various frequencies assuming the “data” field generated by parameters shown in
Table 3 but the model fields generated using the sidelobe parameter values listed in Table
4 except for c1pot, hsea Which are varied. We see that the sidelobe remains strong with a
peak=0.95 or better at multiple frequencies and for the broadband AMS (summing over
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Figure 3: AMS for test data at 100.6Hz using improved geoacoustic parameters. Source is
correctly located at 12.05km, 20.0m with peak value of 0.48.
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Figure 4: AMS at 100.6Hz simulated data for paraml=cypot, param2=h,,q with other
parameters fixed at their true values as given in Table 3.
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Figure 5. AMSs at a variety of frequencies for simulated data for paraml=cy js,
param2=hq with other parameters fixed at their true values as given in Table 3. (a)
75.6Hz; (b) 125.6Hz; (c) 150.6Hz; (d) sum over 75.6, 100.6, 125.6, and 150.6Hz.
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Figure 6: AMSs at a variety of lower frequencies for simulated data for paraml=cypot,
param2=hseq with other parameters fixed at their true values as given in Table 3. (a)
50.6Hz; (b) 55.6Hz; (c) sum over 50.6, 55.6, 60.6, 65.6, 70.6, 75.6Hz.
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Figs. 7a,b,c as shown in Fig. 7d). Thus, even a broadband approach may not eliminate
some false solutions.

parameter value

hssd 2.6m
hawater 115.5m
C1,bot 1601m/s
€2 bot 1691111/8
e 1620m/s
cy 1662m/s
Tsou 12.05km
Zsou 20m

P2 1.35
Azarr -3.4m

Table 3. Improved parameter values.

Finally, in an effort to tamp down this sidelobe we consider a number of source ranges.
In particular, consider AMSs at 100.6Hz shown in Fig.8 for a source at ranges 8.05km,
10.05km, 12.05km (Fig. 7c), and 14.05km. Each of these AMSs shows very strong peaks
from 0.88 to 0.95. However, the peaks occur at slightly different parameter values. Then,
adding the surfaces together results in Fig. 8d with a peak value of 0.75. Thus, we conclude
that sources at different ranges sense the bottom differently with the result that sidelobes
will be different for different ranges. Therefore, a variety of source positions may help
to eliminate false solutions. Unfortunately, this variation will not help in a range-varying
environment.

4, Conclusions

We conclude that Matched Field Processing can be an important tool for the estimation of
shallow water bottom properties. We have examined experimental data and found signifi-
cant improvement in matching the measured field with the modeled field for a number of
parameter value combinations. We have also investigated a number of issues by means of
simulated data and find that: ‘

e Broadband processing with an emphasis on the lower frequencies can help to flatten
out the parameter search space while retaining a broad main peak resulting in more
efficient search schemes.

e A variety of source ranges can also flatten out sidelobes in the search space reducing
false peaks which can appear across frequencies.
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Figure 7: AMSs at a variety of frequencies for simulated data (with true values of Table 3)
varying paraml=e; jot, param2=h,.y with other parameters fixed at the sidelobe values as

given in Table 4. (a) 50.6Hz; (b) 75.6Hz; (c) 100.6Hz; (d) sum over 50.6, 75.6, and 100.6Hz.

We notice that the peak has not significantly decreased as a consequence of the summation
and is still high at 0.96.
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Figure 8: AMSs at a variety of source ranges for simulated data (generated using values
of Table 3) varying paraml=cy jot, param2=~h,eg With other model parameters fixed at the
sidelobe values as given in Table 4. (a) 8.05km; (b) 10.05km; (c) 14.05km; (d) sum over
8.05, 10.05, 12.05, 14.05km. We note how the peak has decreased from a value near 0.95 to
0.75.
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However, difficulties still remain, and these difficulties cut across all inversion techniques.
In particular,

¢ The search for one optimizing solution is extremely difficult. It is complicated by
the facts that the parameter space is enormous and the response surface is highly
non-convex.

e There is no satisfactory way to determine when the “best” solution has been found.
Peak responses will always be less than the ideal value of 1.00. When are these lower
values the result of not having located a better combination of parameters versus the
result of mismatch in the assumed model of the scenario?

Finally, the issue of non-uniqueness is critical. All the inversion techniques developed
to address shallow water environmental properties are plagued by sidelobes of one kind
or another. It is not clear at this point how the various techniques compare: time domain
versus frequency domain? vertical versus horizontal samplings? Phase only versus full field?
This may be a good time to investigate the variety of presently existing inversion techniques
as applied to some uniform, simulated data sets. Some methods may offer advantages over
others, particularly under certain conditions.

parameter value error
hsed 3.3m +0.7m
howater 115.0m  -0.5m
€1,bot 1602m/s +1m/s
€2 bot 1692m/s +1lm/s
¢ 1620m/s

¢2 1620m/s -42m/s
Tsou 12.05km

Zsou 20m

1 1.20 +0.05
Azgry -3.5m -0.1m

Table 4. Parameter values for a sidelobe.
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