Theoretical and Computational Acoustics
D. Lee, Y-H Pao, M.H. Schultz, and Y-C Teng (Editors)
© 1996 World Scientific Publishing Co.

A Formulation in the Time Domain for the Acoustic Waveform
Inversion: Synthetic Examples

G. Chavent

INRIA-Rocquencourt, Domaine de Voluceau, B.P. 105, F-78153 Le Chesnay Cédex
CEREMADE, Université de Paris 9, pl. du M De Lattre De Tassigny,

F-75775 Paris Cédex 16

F. Clément
INRIA-Rocquencourt, Domaine de Voluceau, B.P. 105, F-78153 Le Chesnay Cédex

S. Gémez
IIMAS, National University of Mexico, Apdo. Postal 20-726, Mexico D.F.

B.Lavaud
INRIA-Rocquencourt, Domaine de Voluceau, B.P. 105, F-78153 Le Chesnay Cédex

Abstract

This work addresses the automatic determination of background slownesses in 2D
structures from common shot full waveform acoustic data. When set as a least-squares
minimization problem controlled by the background slowness and the reflectivity in the
depth domain, the inversion problem shows two difficulties: (1) for fixed reflectivity in the
depth domain, phase shifts are responsible for the presence of many local minima for the
least-squares criterion, and (2) for wrong background slowness, when the structure to be
imaged is complex, destructive interferences are responsible for the flatness of the criterion.
The Migration-Based TravelTime (MBTT) formulation cures the phase shift problem by
introducing a reflectivity unknown in the time domain. It is related to the reflectivity
in the depth domain through a migration step which depends on the current background
slowness. In the case of complex structures, time continuation has the benefit effect of
widening the valley of the global minimum. This helps local minimization methods to
reach the global minimum from rather poor initial guesses. We give numerical results of
the inversion of synthetic models with simple and complex structure.

1 Introduction

Given a forward acoustic modeling, one can associate to any slowness v and impedance o the

corresponding collection of synthetic seismograms for all shots,

(v,0) — c=(e1,...,cn),

by sampling at the surface along the time the solution of the forward modeling. Then, one
can set the geophysical problem of the determination of the Earth material properties v and
o in 2D structures from a collection of surface seismic data d = (dy,...,dy) as an inverse

problem through the minimization of the least-squares data misfit function

N 1
J = Z jn with jn = '2‘”dn - cn”2)

n=1
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where |.|| is the Euclidean norm on the space of seismograms.

The difficulty is that the criterion J is highly non convex with respect to the longest
wavelengths of the slowness unknown. This prevents local optimization methods to find the
global minimum, and moreover, due to the huge amount of data and unknowns to handle,
global optimization methods are far too expensive.

Focusing on local methods, we decided to mocdify the objective function by introducing
a new reflectivity unknown in the time domain: this is the Migration-Based TravelTime
(MBTT) reformulation, cf. [7, 4, 3, 5], which cures the phase shift problem. This approach
is related to works by Chavent and Jacewitz, cf. [6],and Symes et al., cf. [11, 12]. In order
to deal with complex structures, we have to overcome the destructive interferences problem,
and we propose to widen the valley of the global minimum of the criterion by using time
continuation.

After introducing propagator and reflector unknowns which are more suited for the rep-
resentation of the physical phenomena, we construct a quantitative migration operator which
is aimed at restoring the true amplitudes of the reflectors. Then the MBTT formulation con-
sists in a change of reflector unknown through a quantitative migration step. We propose a
minimization strategy based on the time continuation principle and we give numerical results
of the inversion of noise free synthetic data sets (described in Appendix).

2 The least-squares criterion

We consider here a forward modeling computed through a finite differences discretization
of the full 2D acoustic wave equation. A multiscale analysis, ¢f. [8, 4], shows that one can
associate long wavelengths of the slowness to the propagation of energy, short wavelengths of
both the slowness and the impedance to the reflection of energy and long wavelengths of the
impedance to smaller effects.

Let us denote by V the discrete space for the material properties v and . We consider an
orthogonal decomposition of this space into the direct sum V = V; @ V;, where V; is a space
of “smooth” or slowly varying functions and V, is a space of “rough” or rapidly oscillating
functions, ¢f. [4] for an example of such a decomposition. Then we define a “propagator”
unknown 7 and a “reflector” unknown r by setting

r=vs and r=(v,0) (3)

where the ; and , subscripts stand respectively for the projections on the subspaces V; and
V,. The smooth projection of the impedance is supposed constant.

Let II = V, be the space of propagators, R =V, X V, be the space of reflectors and D be
the space of seismograms. We denote by ¢ the forward modeling,

p: OXR — D @
(ryr) — c=(e1y...,cN)

and we set the waveform inversion problem as
(P) minimize J with respect to = € Il and r € R,

where the least-squares criterion is defined by (2).
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For fixed propagator 7 € II, the problem (P) presents no difficulty: J is almost quadratic
with respect to the reflector r, and moreover, its Hessian V2,7 is almost diagonal, cf. [10].
Thus, gradient-based methods give very good results, cf. section 3.

For fixed reflector » € R, the problem (P) is very difficult: J is highly non convex with
respect to the propagator 7. There are two main reasons for this non convexity: (1) the phase
shift problem, which is responsible for the presence of local minima, and (2) the destructive
interferences problem, which is responsible for the flatness of the criterion far from the global
minimum. Notice that the latter is only significant for media with complex structures. The
time formulation, ¢f. section 4, cures the phase shift problem and it is necessary to widen the
attraction domain of the global minimum when dealing with complex structures.

3 Quantitative migration

For any propagator 7 € II, let B(7) be the linearized forward modeling operator,

8o,
B(r) = — .
() = 2(r,0) )

It is well known, cf. [9, 13], that its transposed B(m)7 is a migration operator: applied to
the data d = (dy, ...,dn) € D, it produces an image in the reflector space

m=B(mTd=-V,J €R. | (6)

This image is the stack of the migrated sections of each shot obtained by using propagator
7, and it is also the local steepest descent direction for the criterion J. But, because of
the attenuation affecting the fields involved in the computation of the migrated sections, the
amplitudes of the migrated events decay very rapidly with depth, and B(7r)T restores only
the location of the reflectors but not their amplitude.

A quantitative migration operator, c¢f. [3], has the additional property of also restoring
the amplitude of the reflectors. We propose to construct such an operator by modifying the
previous descent direction through

M(r) = AB(m)T. (7)

The Newton minimization algorithm would suggest to use, as the preconditionning operator
A, the inverse of the Hessian of the criterion J. Although this Hessian is computationally
out of reach and non invertible, it is also almost diagonal, ¢f. [10], and this leads us to take
A in the class of positive diagonal matrices.

In this work, we choose a preconditionning proportional to the depth,

A = Xdiag(z), (8)

where the real number A* is the optimal step in the modified descent direction for the criterion
J for some initial guess of the propagator 7°, i.e.

M = arg min J (n°, Mdiag(z) B(m°)Td). (9)



300

4 Formulation in the time domain

The Migration-Based TravelTime (MBTT) concept consists in replacing the search for the
reflector in the depth domain r € R by the search for its dual variable, cf. [2], a reflectivity
in the time domain s = (s1,...,sn5) € D where, for each propagator = € II,

r=M(r)s (10)

with the quantitative migration operator M(r) defined by (7), (8) and (9).
The new forward modeling operator,
nxp @ nxr % p @)
(r,8) +— (m,1) — ¢

is called “resimulation” and it provides a revisited formulation of the waveform inversion as
(MP) minimize J with respect to 7 € Il and s € D,

where J is the same least-squares criterion defined by (2).

We have shown in [b] that this change of reflectivity unknown does not lead to under-
parametrization and that it cures the phase shift problem: for reflectivity fixed in the time
domain s € D, changes in the propagator = € II produce modifications of the reflector esti-
mated in the depth domain r € R such that they annihilate the phase shifts that would have
occured in the synthetics after simulation. This is illustrated in Figures 5 and 7 where, for a
wrong propagator, each event in the resimulated seismograms is located at the correct time,
but possibly with a wrong amplitude.

The second benefit of this time formulation is that, since M(7) is a quantitative migration
operator, the data d is a good initial guess for the time reflectivity s. This is illustrated in
Figures 3 and 4 where the resimulated seismograms are very close to the data.

5 Inversion results

All the optimizations performed here use a BFGS method with limited memory cost.

In the case of simple structures, the criterion J is only subject to the phase shift problem:
notice how in Figure 5, where the propagator is constant, we can still identify the four
reflectors of the SYNCLAY model. We propose then an alternate minimization strategy: first
minimize J with respect to 7 € II from an initial guess 7° with s = d and obtain 7!, then
minimize J with respect to s € D from s° with 7! and obtain s!, and so on... We show
in [5] that a multiscaled representation of the propagator allows a hierarchical minimization
which enhances the optimization, and that it is not necessary to repeat the alternate process.
Figure 6 shows the result of this alternate minimization in the case of the SyNcLAY data, cf.
Appendix. Although the initial propagator is very poor, 7% = 1/2500 s/m, cf. Figure 5, the
optimal propagator presents correct values in the illuminated areas, the estimated reflectors
are correctly located and the amplitudes in the resimulated seismograms are also correctly
restored (the criterion has decreased by a factor of 6).

In the case of complex structures, the criterion 7 is also subject to the destructive inter-
ferences problem: see how poor is the reflector estimated in the depth domain with a ramp
propagator in Figure 7. Indeed, when applying exactly the same procedure as before to the
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MaRrMoUSI data, c¢f. Appendix, even with a better initial propagator 7® (a ramp rather a
constant), we converge towards a local minimum which is far from the true propagator, cf.
Figure 8. So, we propose to help the minimization process by widening the valley of the
global minimum of the criterion 7 by increasing the number of shots (10 in stead of 5) and
by performing time continuation. We define an increasing sequence 0 < T3 < ... < T}, where
T, is the total duration of recording and for each i = 1,...,p, J* is the restriction of the
Jeast-squares data misfit function to the interval of time [0, T;]. Then the minimization strat-
egy is a generalization of the previous one: 79 is given and s = d, for i = 1 to p, minimize
J* with respect to 7 from 7°~! with s*~! and obtain ¢, then minimize J* with respect to s
from s~! with 7' and obtain s, We show in Figure 9 the result of this “time progressive”
alternate minimization in the case of the MARMOUSI data. The increasing sequence is 0.5 s,
0.7 s and 1 s. The optimal propagator and the estimated reflectors are almost correct in the
upper half of the domain but there are still problems with the deeper part (the criterion has
only decreased by a factor of 1.6). .

6 Conclusion

When setting the seismic waveform inversion as a minimization problem controlled by the
background slowness and by the reflectivity depth section, the difficulty is the non convexity
of the least-squares criterion with respect to the background slowness.

The Migration-Based TravelTime (MBTT) formulation, by introducing a reflectivity in the
time domain, solves the phase shift problem, which is the main reason for the non convexity
in the case of models with simple structure. Thus, the MBTT change of reflectivity unknown
allows the construction of a data misfit function which is amenable to minimization by local
techniques and we have successfully inverted the SYNCLAY data set, using a very poor initial
guess of the slowness.

In the case of complex structures, we also have to deal with the second main reason for
the non convexity, the destructive interferences problem. The use of time continuation’ helps
in widening the attraction domain of the global minimum and we have obtained encouraging
partial results for the MARMOUSI data set.
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A Synthetic models

We describe here our two synthetic acoustic models. One has a simple structure, but with
lateral variations, and the other has a very complex structure. In both cases, the medium is a
1km X 1 km square with a resolution of 5 m, the velocity ranges from 1500 m/s to 4000 m/s,
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the density is constant of value 5 = 1000 kg/m?, the source is a Gaussian with peak frequency
of 25 Hz, there are 49 hydrophones all over the medium, the recording duration is of 1 s,
amplitudes are corrected by a factor /¢ and the direct arrivals are muted off. Propagation is
computed through a finite differences full acoustic simulator.

The simple model is the SYNCLAY model, ¢f. [4], it is made of 5 homogeneous layers. We
show in Figure 1 (top) the smooth/rough decomposition of the slowness (7, 7), cf. section 2.
We consider 5 shots located at 100 m, 300 m,..., 900 m and we show in Figure 1 (bottom)
the corresponding seismograms, (7 = U + #,,8 = p/V) —> d = (dy, ..., ds).

The complex model is extracted from the MARMOUSI model, ¢f. [1], it corresponds to the
rectangle [5800,7400] x [1160, 2600] (in m). In this paper, we still denote by MARMOUSI this
“sub-MARMOUSI” model. We show in Figure 2 (top) the smooth/rough decomposition of the
slowness (7, ). We consider either the same 5 shots as before or 10 shots located at 50 m,
150 m,..., 950 m and we show in Figure 2 (middle, bottom) the corresponding seismograms,
(17: ﬁs'i'ﬁraa‘:ﬁ/ﬂ) —d= (dh"')dlo)‘

In both cases, we will take the smooth impedance constant, o, = 1.5 108 kg/mZs.
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Figure 1: SYNCLAY model. Top: slowness (in 10~ m/s), left: smooth slowness 7,, sampled
at o~ 50 m, right: rough slowness 7,, sampled at ~ 5 m. Bottom: 5-shots data set.
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Figure 2: MARMOUSI model. Top: slowness (in 1073 m/s), left: smooth slowness 7,, sampled
at ~ 50 m, right: rough slowness #,, sampled at ~ 5 m. Then 10-shots data set, middle:
shots 1 to 5, bottom: shots 6 to 10.
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Figure 4: MARMOUSI model. Resimulation of the data s° = d of Figure 2 with the true
propagator. Top left: true propagator 7. Top right: estima,ted reflector r,. Then simulation
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