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Abstract

The method of plane wave decomposition is used to model acoustic propagation
in shallow water from a point source in the sea-bed. The work was prompted by
the need to model blast waves emanating from explosive charges buried in boreholes,
which are used to fragment unwanted bedrock. The water channel is assumed to be a
homogeneous medium of constant depth, and a point spherical source is located below
the rock-water boundary. By using the analytical decomposition of a spherical wave
into plane wave components, the resulting pressure due to the spherical source is given
as a single, one-dimensional integral. This integral is of a similar form to the well
known expression for the case of a point sotrce located within the water channel, and
in fact the denominator is identical. Inverting the denominator as an infinite series
produces a summation of integrals, or images, with each image corresponding to the
exact pressure produced after a certain number of reflections from the water surface
and sea-bed. The integrals are solved numerically using reliable adaptive integration
routines and advanced computational power. It is not necessary to evaluate each
individual image integral and then add them together, since the single integral that
the image formulation converges to can be evaluated directly. By integrating the real
and imaginary parts separately, results are produced for both the case of the point
source in the sea-bed and the point source in the water. The effect of shear waves
in the sea-bed is also incorporated into the model by using the fluid-solid plane wave
reflection and transmission coefficients in the integrands. An experiment has been
conducted to validate the results produced by the integration routine for the case
of the point source within the water channel. This involved using a hydrophone as
an impulsive source in a scale model shallow water channel of 12.5 cm depth, and
measuring the propagation loss as a function of increasing radial distance. Excellent
agreement was found between the measurements and the theoretical predictions. This
paper presents details of the theoretical approach, and presents results in both the
frequency and time doma.lns Comparison will then be made with the expenmental
results. T

1 Introduction

Explosive charges buried in boreholes are used frequently in the underwater corstruction
industry to fragment unwanted bed-rock. When the explosives are fired, the large pres-
sure wave created in the water will radiate out and impinge upon any structures or swim-
mers/divers in the vicinity. A typical water depth involved is of the order of 10-30 metres.
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Determining safe stand-off distances from the explosive site therefore calls for a study of
transient propagation in shallow water from a source located in the sea-bed. The theoretical
model being used is shown in Figure 1, in which a point spherical source is located at a
depth of 2y into a homogeneous elastic half space. The water channel is assumed to be a
homogeneous medium of constant depth d. The receiver is located in the water channel at
a height z above the sea-bed and at a radial distance r from the source. Due to the receiver
and boundary often being situated well into the acoustic near-field of the source, models
such as SAFARI would not produce accurate results for this propagation problem.

The theoretical formulation is identical to that used for the classic shallow water problem
shown in Figure 2, where the source is located within the water channel. By decomposing the
outgoing wave from the point spherical source into plane wave components, Brekovskikh [1]
obtains an exact expression for the acoustic pressure in the latter case. After exploiting the
circular symmetry using either Hankel or Bessel functions, the pressure in the water reduces
to a single one-dimensional integral over the complex incident angle, 6;; 8; being the angle
that each plane wave component makes with the z-axis. Two different analytical approaches
have been used in.the past to analyse the behaviour of the integrand. Firstly, the poles
of the denominator correspond to the cut-on of modes within the shallow water channel.
By deforming the path of integration in the complex 6; plane, Brekovskikh uses Cauchy’s
method of residues to represent the acoustic field as a summation of normal modes. Zhang
and Tindle[2], Glegg[3] and Chapman(4] then use approximate methods to characterise the
most important features. of the acoustic field.

The second analytical approach involves inverting the denominator as an infinite series
to produce a summation of integrals, or images, with each image corresponding to the
exact pressure produced after a certain number of reflections between the water surface and
sea-bed. Various methods have been used to solve individual image integrals of this kind.
Plumpton and Tindle [5] used saddle point analysis to calculate the field reflected back from
a fluid-fluid interface. Westwood [6] allowed the angular dependent reflection coefficient to
influence the location of the saddle points. Westwood was then able to calculate the pressure
in flat and sloping shallow water waveguides by adding together such integrals [7].

For the point source in the sea-bed (Figure 1), the solution derived in the next section is
found to be of a similar form to the single integral over complex angle given by Brekovskikh
when the source is located in the water. Rather than taking either of the two above men-
tioned approximate methods to evaluate this integral, exact results are produced by direct
numerical integration. By eliminating all poles in the integrand and using advanced compu-
tational power, it is possible to solve the single integral numerically in a reasonable amount
of computation time. Even if a large number of modes are propagating, thus producing an
extremely ’spiky’ integrand, the numerical integration routine is still reliable. To demon-
strate this, a comparison will be made between theoretical predlctlons and experiment for
the case of the point source within the water channel.
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2 Theoretical Solution for a Point Source in the Sea-
bed

A point spherical source located in rock will generate only P waves, and hence the spherical
wave generated by the source can be represented by the scalar displacement potential ¢.
Referring again to the geometry shown in Figure 1, and using the Sommerfeld integral [1]
with a time dependence of e/“?, the potential incident on the rock-water boundary ¢; is given

by
¢. - e"jk1\/r2+z§ - ik /J (k 1") e—ik=170 sin 0:d0; (1)
i = “—_‘—m =—JrK 0 R 1004 A
where :
k, = kysinf; k,y = kycosb; kv =w/c (2

and the path of integration I" for the complex variable 6; is shown in Figure 3.

The geometry has been reduced to plane wave propagation in the z-direction, with all
radial dependence and circular symmetry being accounted for by the Bessel function. In
order to arrive at an exact expression for the pressure in the water, a transfer function is
now included in the Sommerfeld integrand of Equation (1). This transfer function must
relate the plane wave components incident on the rock-water boundary to a point of interest
within the shallow water channel. To arrive at this transfer function, consider firstly the case
of no shear waves in the rock. By analysing the response of the three layer system shown in
Figure 4, the transfer function will be given by

0= ) 0

where ¢ = ¢, + ¢s. Simple plane wave analysis yields

T (e-—jkzgz + Rze—jk,2(2d—z))

T (011’ Z) = (1 _ Rlee‘jz’“xﬂd) (4)

where Ty = 22,/ (Z1 + Z,), the fluid-fluid plane wave transmission coefficient from the bot-
tom into the water, By = (Z1 — Za) / (Z1 + Z), the fluid-fluid plane wave reflection coeffi-
cient seen from the water channel looking into the bottom, and Ry = (Z3 — Z5) / (Zs + Z),
the fluid-fluid plane wave reflection coefficient seen from the water looking at the water
surface, ahd where

_ P1Cp 7 P2C2 Ze — P3cC3 (5)

. Ly = 3=
cos 8; cos By cos f;

7
ith
Wl sind; . sin 6 _ sin 03
Cp Co C3

Placing (4) into (1), the exact expression for the field in the water is given by

g Jka2z 4 Ry e~ ikz2(2d—z)

(1 - R1R2 e_j%’?d)

D
¢ =—jks /r Jo (kyr) ek - ( sin 6;d0; (6)
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Equation (6) should now be compared to the exact expression arrived at by Brekovskikh for
the field produced in the water when the source is also located in the water. For & point
source of strength ¢ and using the geometry shown in Figure 2, this is given by

(1 + Rle—jzk,m) (1 + Rze—jzk,,l(d_z))
(1- Rlee—j2kz1d)

Note that, the subscripts used to represent the bottom and water are interchanged in Figures
1 and 2, with the intention of making k,; always represent the z-wavenumber in the same
medium as the source. For a given z-wavenumber in the water channel, the denominators
of equations (6) and (7) are therefore identical. From a modal standpoint this is reasonable,
since the same poles are expected. Brekovskikh replaced the denominator by an infinite
series, using the relation '

p (7‘, Z) = wﬂz*’zkl /l'.‘ Jo (k‘.,-r) g Ika1(a~20) sin 6;d6; (7)

. . —1 e .
(1 _ Rlee—_ﬂkzzd) - Z (Rle)l e—]2k,2dl (8)
1=0 .
By applying equation (8) to the denominator of equation (6), the field in the water is written
as

¢ = —.jkl Z /]; JO (krr) e_jkz,lonl (e—jkzz(z+2dl) + Rze—jkz2(2d(l+1)—z)) (R1R2)l sin 0,d9, (9)
1=0

Equation (9) can now be interpreted as an image model. For example, when | = 0, equation
(9) is given by

(I5 = —jk]_ /I“ Jo (k,"l’) e—j(k"lzo.i‘kzzz)Tl sin gidgi - ]kl / Jo (kr'r') e_j(kzlzo-'-kzz(zd_—z))Tle sin c9,~d9i

! (10)
The first integral in (10) is the exact field produced at a receiver position after transmitting
through the lower boundary into the water as if the water surface was not present. The
second integral is the exact field produced in the water due to the source transmitting
through the boundary, reflecting off of the water surface, and transmitting back down to the
same receiver position. Upon increasing / in (9), the number of reflections between the water
surface and sea-bed progressively increases. With this image model in mind, it is clear that
the expressions for 77 and R; in equation (6) can be extended to the case of an elastic lower
medium. Equation (6) would then be solved using the solid-fluid transmission coefficient
and the fluid-solid reflection coefficient, given by

9 » .
T = 2p1Z; cos 2y (11)
02 (Zl cos? 2y + Z,sin? 2y + Zz)
‘and ‘
R (Z1 cos® 2y + Z,sin? 2y — Zz) (12)
te (Z1 cos? 2v + Z, sin® 2y + Z2)

where c

Z, = 2% . (13)

Cos vy



403

and .
sinf; sinvy

G Cs
The method used to solve these equations will now be discussed.

3 Computational Method

Rather than taking the modal approach, the complete integral expressions in the form of
equations (6) and (7) are evaluated numerically. In theory, it is necessary to evaluate up to
infinity along the evanescent path in Figure 3. In practice, it is sufficient to evaluate as far
as a truncation value ; = % + ja; where the value of a; is determined by investigating the
decay of the exponential terms in the integrand. Several tests were performed to check that
the integral had converged, by progressively increasing the value of a;.

Direct numerical integration is only possible if the integrand is in a form where there are
no poles present, otherwise the adaptive integration routine will break down. This involves
implementing the reflection and transmission coefficients in the form

_ COS2 2’)’/Z2Z3 + SJ'.II2 2’)’/Z1Z2 - 1/Z1Z3
Y7 082 2v/ 232, + sin® 2y/Z1 25 + 1] 71 Z,
otherwise poles exist in the impedances Z, at the point where the cosine of the associated
angle equals zero. The only pole remaining in (14) corresponds to the Stoneley wave, and
was eliminated by introducing a small imaginary part to the shear wave speed.

There is still one other point in equations (6) and (7) t6 be considered, which corresponds
to plane waves within the water channel which travel at grazing incidence to the sea-bed.
For both equations (6) and (7), the integrand takes a value of 0/0. L’Hopital’s rule was used
to calculate the limiting value at this point. For the case of the point source in the water,
the limiting value is zero. For the case of the point source in the sea-bed, the limiting value
is not zero, but the adaptive integration routine does not have any problems in following the
smooth behaviour of the integrand around this point.

The image models serve as a useful means of checking the reliability of integrating equa-
tions (6) or (7) directly. The image integrals are much easier to integrate numerically, as they
do not contain the spiky behaviour caused by the generation of modes. A comparison was
made between the result obtained by adding together the summation of image integrals, and
the result obtained by directly integrating either equations (6) and (7). The same answer
is produced, though integrating equations (6) and (7) directly takes a considerably smaller
. amount of computation time.

Time domain results are produced by evaluating equations (6) or (7) at discrete frequen-
cies over a band of interest, followed by an inverse FF'T. The response to any source time
history can then be found by convolution.

(14)

4 Results and Comparison with Experiment

An experiment was conducted to test the results produced by the numerical integration
routine. This involved using a hydrophone as a point source in a scale model shallow water



404

channel of 12.5 cm depth. The parameters of the base of the channel were determined by
obtaining data from the manufacturers for the elastic parameters of the particular type of
concrete used, from which the compressional wave and shear wave speed were calculated.
The propagation loss as a function of range was measured for several specific values of z; and
2, and then compared to the theoretical results obtained by directly evaluating equation (7).
Figure 5 shows the propagation loss at two different ratios of acoustic wavelength in water
X to the water depth d. Good agreement was observed between experiment and theory.

A time domain comparison was also made between experiment and theory. This was
achieved by firstly determining the bandwidth over which it is possible to get good agreement
in the frequency domain, and then using the same bandwidth in the theoretical calculations.
Two time domain comparisons are shown in Figure 6. The ringing of the impulsive output
from the hydrophone has been deconvolved out as far as possible by the use of an inverse
filter. Figure 7 shows a theoretical prediction when the source is located in the rock. In
order to get good resolution in the time domain, a relatively large bandwidth was used. The
source time history used in the top diagram of Figure 7 is a Hanning pulse. The first arrival
corresponds to a ray path travelling through the rock and then refracted up in the water to
the receiver position. Later arrivals correspond to the ray paths of the images. The relatively
low frequency arrival is due to evanescent energy incident on the rock-water boundary. The
lower plot in Figure 7 shows the result of effectively filtering out the evanescent waves
incident on the rock-water boundary by modifying the incident pulse waveform to remove
the low-frequency energy, and thus ensuring that the boundary is in the far-field of all of
the impulsive energy produced by the source. The low frequency arrival can be seen to be
removed.

5 Conclusions

The mathematical formulation of an image model has been arrived at for the case of a point
source located in the sea-bed. It is not necessary to evaluate each individual image integral
separately followed by summation, as the single integral that the result converges to can
be evaluated directly. Exact results have been produced using this numerical integration
technique for both the case of the point source in the sea-bed and the point source in
the water, though this is only possible in a reasonable amount of computation time using
advanced computational power. A typical amount of time taken is 7 minutes for a 2048
point spectrum running on a Silicon Graphics Indigo Elan/R4000 workstation.
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Figure 1 The theoretical model being used to study shallow water propagation
from an embedded source. The water channel is assumed to be a homogeneous
medium of constant depth d.
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Figure 2 Geometry used in which the source is located within the shallow water
channel
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Figure S Theoretical and experimental propagation loss for a point source within the
shallow water channel at two different ratios of Md (23 /d =0.5 and z/d = 0.12).
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Figure 6 Theoretical and experimental pulse propagation for a point source within
the shallow water channel at two specific receiver positions (both with zg/d=0.5
and z/d=0.12). The first position is very close to the source (r/d =0.3). The
second position is at r [ d =10, where the presence of head waves can be clearly seen
in both the theory and experiment. The later arrivals in the measurement are side

reflections from the experimental tank.
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Hanning Pulse Response
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Figure 7 Theoretical Hanning pulse response in shallow water from a point
source in the sea-bed, and the result of filtering out the evanescent field incident on
the rock-water boundary. The parameters used are zp =10m r=20m z=0.1m

d=15m  p;=2600kg/m3  p,=1000kg/m3 py=12kgm3 ¢, =3700m/s
c~(2200+))m/s cp=1500m/s c3=344m/s.




