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ABSTRACT

This paper presents the concept, principle, and method of neural network inversion.
The neural network refers to a particular multi-layered, paralleled data processing sys-
tem which can adapt the weight matrix to match the changes of the environment. The
neural network inversion means to implement the mapping from a multi-dimensional
space of observation field to another multi-dimensional parameter’s space by this par-
ticular system. As one of the applications to the ocean science, the research discusses
the detection of some parameters for a moving body that can be seen as a moving
acoustic source. A trained neural network has a capability to find the parameters of a
submerged moving body with a real time solution.

1 INTRODUCTION

The detection of a submerged moving source has attracted attentions for the last decade. Basically,
there are two measurement means: acoustics and electromagnetics. As a acoustic approach a source
that emits a constant tone and moves at a constant speed can be localized by measurement of the
Doppler shifted frequencies (DSF). The acoustic signal is received by spatially separated sensors.
There must be five sensors to give a determinant solution. Weinstein (1982) gives an exact solution.
Weistein and Levanon (1980) and Statman and Rodemich (1987) gives iterative solutions, and Chan
and Jardines (1990) and Chan and Towers (1992) gives the grid search solution. The high dimen-
sionality leads to a large computational time. Chan (1994) developed a one dimensional grid search
solution which requires three sensors and greatly reduces the computational time.

As an electromagnetic approach it is possible to detect the submerged body itself or its wake.
Robindon (1992), Marshall (1988) indicated that the sensitivity of electromagnetic field sensors
has been improved to allow non-negligible detection ranges. However, the electromagnetic fields
produced by the eddy currents in its metal parts which are rotating in the earth magnetic field
may not expect to observe more then several hundred meters away from the moving body. Tuck
(1994) presented a theoretical study and shown that the motion of sea water due to the wake of a
submerged moving body induces significant magnetic signal as far away as ten kilometers along its
path. Earlier, it was the general belief that only shot-period wavesin a moderately rough sea could
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produce a measurable magnetic field. However, Weaver (1965) showed that long-wavelength ocean
swell can be as important as local wind waves of great amplitude.

In this paper we present a new approach based on the finite element method (Teng, 1989; Teng,
1993) and neural network inversion (Fei, 1995; Fei, Kuo and Teng, 1995) to localize the submerged
moving source. Although geophysicists have successfully applied neural network to detect unknown
underground inclusions, designing and training a network are still more of arts than science (Poulton
and et al., 1992). Fei (1995) and Fei, Kuo and Teng (1995) present the concept and principle of
neural network inversion to detect the spatial parameters of unknown inclusions (Fei, Teng and
Kuo, 1994). Moreover, the basic theorem-three-layer neural network existence theorem (Lorentz,
1976; Kolomogorov, 1957; Hecht-Nielsen, 1987; Hecht-Nielsen, 1989; Carrol and Dickinson, 1989;
Cybenko, 1989) and multi-layer neural network existence theorem (Fei, Kuo and Teng, 1995) provide
a solid theoretical foundation for the neural network inversion.

An acoustic field distribution for a moving source that emits a series pulse with special forms
and moves at a constant course and speed can be computed by finite element method. The finite
element modeling can simulate unstratified fluids and complex sea bottom structure, this method
can generate real data to train the neural nets. The trained network can be used to find a real
time solution based the neural network inversion principle. Using the 3-D finite element method
to solve problems presented by realistic sea shore structures still requires considerable memory and
execution time in computation. In this research, we only provide the nurmerical data from the 1-D
and 2-D finite element modeling.

2 FINITE ELEMENT MODELING

We employ finite element method as a training data generator. The wave equation of pressure field
p for a moving source with a constant velocity vg is

o Py _ 10
022 ' 922 T 2 Ot?
?=k/p

where & is Dirac delta function, zo, zo is the source point, ¢ is the sound speed of acoustic wave, k
is the bulk modulus, p is mass density and S is the applied source function.
The finite element equation in matrix form is

[M){F} + [K}{p} = {£}

where [M] is the global mass matrix, [K] is the global pseudo stiffness matrix, {p} is the column
matrix for pressure field. {f} is the applied source matrix.
The time integration-explicit central difference scheme is

{pt+ A0} ={p (1) + {p()} At
{B(t+ A0} = {p (t) - [KHM]"{p(t + L0)} At
The Figure 1 indicates the source function for this moving source. While in the conversional

methods the moving source emits a constant frequent tone. The two kinds of sources can be converted
by Fourier transformation.

+ 56(1' —zp + 'Uot)&(z' - 20)

3 NEURAL NETWORK AND NEURAL NETWORK IN-
VERSION

- The term neural network (or artificial neural network), is derived from its resemblance to the bio-

logical interconnection of neurons. A typical neural network consists of many processing elements,
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Figure 1: The source function of a moving source.

each of which is tightly connected to another by the modifiable weights. Neural network is expected
to learn by representative sets of examples from the given condition.
The neural network may be defined as:

Definition The neural network is defined as an overly simplified human-brain system with a
parallel, distributed information processing structure, which consists of a number of layered process-
ing elements. Each element in a given layer has a single: output connection into all elements in the
next layer. When the information is sensed by analogy-to, say, the eyes, ears or skin, it is passed
on to the multi-layer nerve system. Comparison with the prior information as the trained network
keeps the learning results as a fixed weigh matrix, the neural network thus discriminates the output
of the results, just as if the human-brain system has the capability of judgment.

In this paper we simply regard "neural network” as a parallel, three-layer data-processing machine
without real biological meaning attached. A three-layer neural network configuration consists of one
input, one hidden, and one output layer. Every element (or neuron) is connected to the next layer
by the so called "weights.” The weights are calculated during a supervised training process, in
which a representative set of input and a desired output is presented to the network. The network
undergoes a learning procedure to register all changes of weights through the feed-forward and
backpropagation neural networks cyclically. One cycle (or one iteration) is to complete a feed-
forward and backpropagation training procedure.

For a given sea water model with a moving source, the finite-element modeling method can
simulate the distribution of the wave-field on the sea water as

P(mrzrl t! n)
where m denotes the source position, z, denotes the recording point, ¢ is the time, and n denotes
environment parameters of the sea. ’

The meaning of inversion here is to seek a set of parameters m that minimizes some norm of the
difference between the observed data d and the predicted data p. In general, the L; norm of the
data mismatch is minimized, leading to the following objective function,

F(m) = |d - p(m)? = lef.



466

The solution for an inverse problem is defined as a set of parameters m for which F(m) is the
global minimum of the function F.

The objective function is generally minimized interactively by updating the subsequent initial
guess of the position parameter mg.

Assume the unknown true value is m;. Set up an n-dimensional Euclidean space with coordinates
My, Ms, ...,M,. The initial guess mgy and the unknown true value m; are mapped into the n-
dimensional space. The inversion procedure can be seen as a point movement from mg toward m;.
We may use the finite-element method to forward-model p(myg), and calculate the error function
such that

d — p(mo)f’ = lef*

Therefore, we adopt an interactive inversion method to move the point mg through my  m,.
The distance and direction of the movement are related to the adopted method. By means of
minimization, the error function approaches a minimum ey > e; > e3... > €, — 0. When |e| is
smaller than a given positive value, this interactive procedure terminates. This global minimum is
empirically assured in a conventional inversion method, when the initial point myg is in the valley of
the global minimum, the search will successfully reach the point m;. When the initial point my is
trapped in the valley of the local minima, the search fails.

We choose k sampling points mj,my, ..., mg, which are uniformly distributed in the sphere.
Then we establish a matrix p;my, to train the neural network, where

Pim = p(ma zy, t, )'

The training procedure can be viewed as the confirmation of the mapping between pty, and m.
After learning, the neural network assumes the capability to inverse the real observed data pym, to
find the m;.

4 NEURAL NETWORK TRAINING

In the feed-forward neural network, The input data points of the vector x( ) is first presented to the
11 input layer of the neural units so that the after-sigmoidal output at the {3 later (or hidden layer)
is

D) = o3 WD) = o(82)

t133
i1=1
which, in turn, is used as the input to the I layer.
The after-sigmoidal output at the I output layer is

y(:)(x) = o( g§3) (x) = U(Z w3, Z w2, (1)

i2fs 1382
fg=1 =1

In above two equations, W,.(ll;’f) and W.-(:,-'f) are the weights, linking the l; and I, layer, and the Iy
and I3 layer, respectively, o is a sigmoidal function, iy=1,2, ..., I1, and i3 = 1,2, ...I; are the neuron’s
numbers in the I; and I3 layer, respectively.

In the feed-forward neural network, zg) is known, and in the initial feed-forward (or the first

iteration), W,(l, ) and W(2 3) are made to be random, and o is the sigmoidal function.

os) =

The backpropagation is essentially a generalization of the least-squares procedure for the neural
network between the input and output layers. The change of the weight is calculated starting on

1+e'5
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the output layer and going backward calculating updated weights for each layer. In the process, the
so-call ”delta-rule” is applied to increase the speed of convergence to stable state,

In training, the post-sigmoidal error e [t] at the I3 layer is then backpropagated to the I3 layer,
O] — of — o

where y,(f) is the known desired output.
The post-sigmoidal error in the I3 (or hidden) layer through backpropagation is then:

Is
D] =3 WIS,

1283
is=1

where 65;;) [t] is obtained by:

I

and

Pl t]«—z WDl Dfe).

ig=1
The after-sigmoidal input qg)[t] at the Iy layer is simply

1
qg)[t] = 0(55,2)) = —s@’
14e7"%

and, W,(i ) is obtained from the initial feed-forward in being random.

Again, here W,(2 3)[t] is the random weights assigned in the initial feed-forward network.
At this stage the change of the weights between neuron ¢3 in the I3 layer and every neuron #; in
the Iy layer can be calculated by:
AWM — 5161

iais

and the modified weight with the addition of the momentum term

Wt + 1) = WEIN + B¢t + a A WEITE - 1,

f2i3 i2i3 taiy
where 8 is the learning rate and « is the momentum rate.

Following the same procedure, we are able to backpropagate to obtain the post-sigmoidal error
e,(:)[t], the change of the weight AWS‘ 2 )[t — 1] and the modified weight W,(ll, 2 )|t + 1] linking the I
to I layer.

For the second iteration (or the second cycle), the second feed-forward output at the I3 layer
y,(f)(x) can be obtained by the feed-forward process, using the weights W,‘(ll,-’f) and V[/}?,-’f) having
been updated in the first iteration, and the input data points of the vector zgl) By the same
token the post-sigmoidal error e( ) at the I3 layer is backpropagated through the I3, I2, and I; layer
to complete the second 1tera,txon (or the second cycle), and to obtain the newly updated modified
weights W(1 2) and W2,

Such an 1terat1ve feed-forward and backpropagation procedure is repeatedly carried out to obtain
the final optimized weights.

If the network is properly trained with a representatlve set of acoustic data, the final inversion is
accomplished by the feed-forward network to obtain the after-sigmoidal output at the I3 layer that
is the most optimized output in the sense of least-square-error.
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Table 1. The velocity inversion for 1-D modeling.

No NNT inversion True value Accuracy| NNT inversion True value Accuracy
unit(km) unitkm) % unit(km) unit %
1 20.23 20 1.13 18.76 20 -1.2
2 25.03 25 0.11 25.05 25 0.22
3 29.92 30 -0.25 30.16 30 0.53
4 35.04 35 0.11 35.03 35 0.07
5 39.98 40 <0.05 39.97 40 -0.08
8 4492 45 -0.18 45.02 45 0.04
7 48.94 50 -0.12 49,92 50 -0.16
8 54.99 55 -0.01 54,99 55 -0.02
9 60.03 60 0.05 58.94 60 -0.1
Average . 0.22 0.26

Position=12.5km Position=13km

No NNT inversion True value Accuracy| NNT inversion True value Accuracy
unit(km) unitkm) % unit(km) unitkm) %
1 20.08 20 0.31 19.81 20 -0.87
2 251 25 0.41 25.09 25 0.37
3 29.82 30 -0.59 29.98 30 -0.08
4 34,95 35 -0.13 35.04 35 0.11
s 39.99 40 -0.02 39.99 40 -0.03
6 45.05 45 0.12 44.98 45 -0.04
7 49.84 50 -0.32 50 50 0.01
8 55.03- 55 0.06 55.08 55 0.15
9 59.99 60 -0.01 60.08 60 0.1
Average 0.21 0.21
Position=13.5km Posision=14km
No NNT inversion True value Accuracy { NNT inversion True value Accuracy
unit(km) unit(km) % unit(km) unit(km) %
1 20.24 20 1.18 20.11 20 0.54
2 24,94 25 -0.22 25.05 25 0.2
3 29.87 30 -0.43 28.89 30 -0.38
4 35 35 -0.01 35.05 35 0.13
5 39,96 40 -0.09 39.87 40 -0.32
6 45.04 45 0.09 45.05 45 A
7 49,86 50 -0.08 50 50 0
8 55.11 55 0.2 54,95 55 -0.08
9 60.06 60 0.09 58.98 60 -0.03
Average 0.28 0.2
Pasition=14.5km Position=15km

5 APPLICATIONS

Figure 2 shows the 1-D finite element modeling of a moving source. The acoustic velocity of the sea
water is 1.5 km/s. The x-coordinate of the receiver is 0 km. The x-coordinate of the start point is
from 12 to 18 km at an interval 0.5 km. The velocity of the moving source is 5, 10, ... 60 km/h.

Figure 3 illustrates the training data. The training model number 1 to 12 denotes the velocities
of the moving source from § to 60 km/h at an interval 5 km/h. Figure 3(a). The start point position
of the moving source is 12 km. Figure 3(b). The start point position of the moving source is 14.5
km. Figure 3(c). The start point position of the moving source is 17 km.
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Figure 2: 1-D finite-element model. The acoustic velocity of the sea water is 1.5 km/s.
The x-coordinate of the receiver is 0 km. The x-coordinate of the start point is from

12 to 18 km at an interval 0.5 km. The velocity of the moving source is 5, 10, ... 60
km/h.

Table 1 indicates the result of neural network inversion for the 1-D moving source for the position
of 12.5, 13, 13.5, 14, 14.5, 15 km. The average accuracy is 0.22%.

Figure 4 is 2-D finite-element modeling for a moving source. The acoustic velocity of sea water
is 1.5 km/s. The thickness of the layer is 1000m. The second layer’s velocity is 2.7 km/s. The depth
of the moving source is 200 m, and the start position is 0 km. The x-coordinate of the receivers on
the surface of the sea-air is 0, 0.5,...6.0 km. The velocity of the moving source is from 5 km/h to 60
km/h at an interval 5 km.

Figure 5 shows the finite element synthetic seismogram. Figure 5(a). The velocity of the moving
source is 20 km/h. Figure 5(b). The velocity of the moving source is 40 km/h. Figure 5(c). The
velocity of the moving source is 60 km/h.

Figure 6 shows the training data, which is collected from the results of the finite element method.
The training model number ! to 12 denotes the velocities of the moving source from 5 to 60 km/h
at an interval 5 km/h. Figure 6(a). The velocity of the moving source is 5 km/h. Figure 6(b).
The velocity of the moving source is 30 km/h. Figure 6(c). The velocity of the moving source is 55
km/h.

Table 2 shows the detection of velocity for 2-D finite element modeling. For the position of 5,

10, 15, 25 km, the average accuracy of the neural network inversion is 2.7%, 3.7%, 2.2%, 2.36%,
respectively.

6 CONCLUSIONS

1) A combination of the finite-element forward modeling method and the neural network inversion
method proves to be an efficient tool to deal with the detection of speed and position of a moving
source in the sea water. The sea water can be unstratified fluids and the host medium can be a
complex structure. The finite-element forward modeling is essential to provide accurate, reliable and
representative sets of data in the neural network training.

2) Although this paper deals with the moving source in 1-D and 2-D sea water environment, the
treatment is equally applicable to 3-D resistively problems.
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Figure 3: The training data. The training model number 1 to 12 denotes the velocities
of the moving source from 5 to 60 km/h at an interval 5 kin/h. a) The start point
position of the moving source is 12 km. b) The start point position of the moving
source is 14.5 km. c) The start point position of the moving source is 17 km.



receiver’s position

0 1.0 2.0 3.0 4.0 5.0 6.0 km
. ¥=5,10,15,...,60 km/h
depth=200 m v=1,500 m/s
moving source sea water layer 1000 m
v=2,700 m/s

Figure 4: 2-D finite-element model. The acoustic velocity of the sea water is 1.5 km/s.
The thickness of the first layer is 1000 m. The second layer’s velocity is 2.7 km/s. The
depth of the moving source is 200 m, and the start position is 0 km. The x-coordinate
of the receivers on the surface of the sea-air is 0, 0.5,...6.0 km. The velocity of the
moving source is from 5 km/h to 60 km/h at an interval 5 km.

Table 2. The velocity inversion for 2-D modeling.

No NNT inversion True value Accuracy |NNT inversion True value Accuracy
unit(km) unitkm) % unit(km) unitkm) %
1 21.75 20 8.75 17.13 20 -14.36
2 241 25 -3.8 24,19 25 -3.22
3 30.88 30 295 28.69 30 -4.36
4 35.17 35 0.48 34,38 35 -1.76
5 39.19 40 -2,03 42.28 40 5.66
8 45.44 45 0.97 45,35 45 0.77
7 48.88 50 -2.85 49.56 50 -0.88
8 56.33 55 242 54.21 55 -1.43
9 59.72 80 -0.47 60.96 60 1.61
Average 2.7 3.7
Position=5km Paosition=10km
No NNT inversion True value Accuracy | NNT inversion True value Accuracy
unit(km) unit(km) % unit(km) unittkm) %
1 21.17 20 5.85 14.22 20 il
2 24,52 25 -1.92 24.49 25 -2.08
3 30.03 30 0.1 29,59 30 -1.36
4 33.85 35 -3.29 34.91 35 -0.25
5 3943 40 -1.44 40.07 40 0.19
6 46.92 45 4.26 46,02 45 2.26
7 50.84 50 1.69 53.16 50 6.32
8 54.39 55 1.1 52,11 55 -5,25
9 60.06 60 0.1 60.72 60 1.21
Average 2,19 2.38
Position=15km Position=25km
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Figure 5: The finite element synthetic seismogram. a) The velocity of the moving source
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