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Abstract: An integral transformation-type method is presented for the analysis of the space-
time domain acoustic wavefield — and the associated Green’s function - in a continuously layered,
lossy, isotropic (equivalent) fluid. Application of a vertically varying compliance memory func-
tion makes it possible to model a large class of depth-dependent loss properties. The method
combines higher-order WKBJ-like asymptotics with the Cagniard-De Hoop method of inverse
transformation. The coefficients that occur in the WKBJ asymptotics follow from a recurrence
scheme that is easy to evaluate by means of a symbolic manipulation program. The form of
the transform domain expressions leads to a very fast inversion process. Numerical results are
presented for reflections from continuously layered halfspaces with depth-dependent losses.

1. INTRODUCTION

There are a number of areas where continuously layered fluids — fluids with medium prop-
erties that change in a continuous way in the vertical direction — may be applied for modeling
purposes. For ocean acoustics and underwater acoustics, their usefulness is easily recognized.
In seismics, continuously layered equivalent fluid models may be employed when only the slow
vertical changes of the properties of the Earth are relevant — e.g., in computational backgrounds
- while at the same time it suffices to represent the solid medium by an equivalent fluid. Unlike
most fluids, the internal losses in many solids are significant. For seismic applications it is there-
fore important that the loss behavior of a viscoelastic solid is carried over to its equivalent fluid
representation. The compliance memory function (Boltzmann [1], Ben-Menahem and Singh [2])
is well suited for modeling the losses in fluids, since it can directly be incorporated in the basic
acoustic equations (Verweij [3]).

For the analysis of the acoustic wavefield in media with temporal and /or spatial invariances,
various integral transformation-type methods exist (Chapman and Orcutt [4]). In this paper
we will develop an integral transformation-type method for the determination of the space-
time domain acoustic wavefield in a continuously layered, isotropic fluid with depth-dependent
losses. Its main ingredients are: a temporal Laplace transformation — with a real and posi-
tive transform parameter — followed by horizontal spatial Fourier transformations; higher-order
WKBJ-like asymptotic approximations of the transform domain solution in inverse powers of
the Laplace parameter; and the Cagniard-De Hoop method of inverse transformation. Since
the asymptotic representations are valid for large values of the Laplace parameter, the resulting
space-time domain approximations will be most accurate near the arrival time. The occurrence
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of the same exponential function in all terms of the WKBJ-like asymptotic representations will
enable us to organize the inverse transformation in a very efficient way. By applying higher-order
asymptotics our method will often yield more accurate results — especially somewhat away from
the arrival time — than with the more common zero-order or first-order asymptotic methods. As
always, there will also be another side of the coin. Due to the nature of the applied asymptot-
ics, for any finite value of the Laplace transform parameter there exists a certain order beyond
which the accuracy of the transform domain asymptotic representations will no longer improve.
In the space-time domain this may lead to divergence of the higher-order approximations after
a configuration-dependent time instant, i.e., the method may loose its significance for later time
instants. When the first arrival at the point of observation is associated with a turning ray, it
will not be accounted for by the exponential function in the WKBJ-like asymptotics, and the
method can not be applied.

2, CONFIGURATION AND BASIC ACOUSTIC EQUATIONS

In this paper we will determine, for a known point source at z{ in a known continuously
layered, lossy fluid, the acoustic wavefield that is present at a point of observation at zP%. We
assume that the wavefield in this medium satisfies the linearized basic acoustic equations

Okvi(zit) + K(z3) Oup(2iy t) + a(za, t) ¥ p(ziyt) = g(zit), 1)
Okp(zi,t) + p(z3) Oevi(iy t) + bea, t) x vi(2i,t) =  fi(zit) (2)

Here we have introduced the subscript notation and the summation convention, where the
lower-case Latin subscripts (except t) range from 1 to 3. The state quantities of the acoustic
wavefield are the particle velocity v and the acoustic pressure p. The symbols 8 and ; denote
a differentiation with respect to zj and t, respectively. The symbol # indicates a temporal
convolution. The source action is described by the volume density of volume injection rate ¢
and the volume density of volume force fz. Without loss of generality we may assume that

d(zi,t) = Q5(t)8(e1, 22y 25— 23), (3)
fi(zit) = FE(t)6(z1, 22,23 — 25), (4)

with @5(¢) = 0 and FS(t) = 0 for t < 0. The compressibility x(z3) and the mass density
p(z3) represent the instantaneous reaction of the medium, and the memory functions a(z3,t)
and b(z3,t) represent the non-instantaneous reaction of the medium, i.e., the losses. For the
after-effects in the compliance, the relation a(z3,t) = 6Z¢(z3,t) holds, where ¢(z3,t) is the (re-
duced) creep function. We omit memory effects in the inertia behavior and set b(z3,t) = 0, as
is often done in the literature. Further we assume that x(z3), p(z3) and a(zs, t) are continuous
functions of &3 that are as often differentiable as required by our analysis.

3. FORWARD TRANSFORMATION
We first subject the space-time domain quantities to the temporal Laplace transformation
Bz, 8) = ‘/:_o p(zi,t) exp(—st) de. (5)
Reversely, for a given function $(z;, s), the solution p(z;,t) of this integral equation is unique

and causal if p(z;, s) is bounded for the infinite set of points s, = so + nf with so real, positive
and sufficiently large, n = 0,1,2,-+, and £ positive and real (Lerch’s theorem, see Widder [5]).
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In the Cagniard-De Hoop method only these values of s play a role. We further apply the double
horizontal spatial Fourier transformation of the Radon type

Plon, 02, 23,8) = / / B(zi, s) explis(ai 21+ azzs)] dzy de,. (6)

The inverse of this Fourier transformation is

B(zi, 8) = (21&') / / Blay, ag, ¢3, 8) exp[—is(a 21+ azzs)] dag das. )

To keep the expressions readable, from now on we will omit most arguments of the functions.
Application of the forward transformations to Egs. (1) and (2), followed by the elimination
of ¥; and ¥, results in the transform domain state vector differential equation

83br + sArs(23) by = K1s(za, s) b + @r. (8)

The upper case Latin subscripts range from 1 to 2. Here, by = (i, ﬁ)T is the transform domain
state vector, and @y = §(z3 — 25 )(Q", FV)7 is a notional source vector with

( ol ) ( Q5 +i(aa P + ar ) [ p(zs) )

FN F3 (9)

Further,

0 T3 Y T3
AIJ(2=3)= (‘7(23)/1’(33) 7( )0 ( )) (10)

forms the system matrix, in which y(z3) = [e(z3)~2 + o + a3]'/2 is the vertical slowness — with
e(z3) = [p(z3) i<,(:n3)]_1/2 being the acoustic wavespeed — and Y (z3) = v(z3)/p(z3) is the vertical
acoustic wave admittance. The fact that y(z3) is real and greater than zero for any of the values
of oy and ay that occur in the inverse Fourier transformation, is important for the validity of
the WKBJ-like asymptotics that will be introduced in the next section. Moreover,

Kis(zsys) = (g —6(23,8)) (11)

is the memory matrix representing the losses.
4. WKBIJ-LIKE ASYMPTOTIC REPRESENTATIONS

As the first step in finding approximate solutions of the state vector differential equation,
we introduce the wavevector 1; through the composition relation by = Nyj(23) Wy, where

P(ag) —YV%(zs
Nis(z3) = \/_(;”1/22(( )) Y}:;/z((ms)))- (12)

The wavevector components w; and i, represent waves that travel in the positive and the
negative z3-direction, respectively. Substitution of the composition relation in Eq. (8) yields the
wavevector differential equation, which we subsequently recast into the corresponding integral
equation (cf. Verweij [3],[6])

'IIJ[=LI_]1I)J+7LI. (13)
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The term

[ (@ra(eh, ) a(a5) + Ona(ah, a)a(a%)] exp(~s [2F 7dc) dah
Lygwy = - , (14)
— [ 1@n(s}, 6) in(s5) + Oaa(at, ) Balet)] exp(—s [ () dof

with @75(za,s) = [(-1)! &(zs,s) + (1 — 615) 83Y (23)]/2Y (23), stems from the losses and the
inhomogeneity of the medium. The term

[ $vEE Hes - of) exp(-s [ 1 40)
hy= , (15)
~3v2a, H(2§ — z3) exp(—s [3 7 dC)

with &; = F§ Y1/2(25) — (~1)!Q5 Y~/2(z5), originates from the source.

Now we have to solve the wavevector integral equation. Repeated substitution of Eq. (13)
into itself yields, under very general conditions, a convergent Neumann series solution. For a
general inhomogeneous, lossy medium, the analytical and numerical evaluation of the higher-
order terms of this series will be virtually impossible. However, repeated integration by parts
of the terms of the Neumann series solution will result in WKBJ-like asymptotic expansions of
the wavevector in inverse powers of s {cf. Verweij [6]). This has inspired us to approximate the
wavevector by

N
o~ ep(-s 130D ) (w0 ), (1)
n=0
x5 N - (n) S
wr ~ exp(—s xa“'yd()Zs " Q5 (z3,5), (23 < z3). 1n
n=0

These are Nth-order WKBJ-like asymptotic representations of the wavevector for large values of
s. The exponential parts are supposed to give the propagation of the wavefront from the source
to the point of observation, and the summation parts describe the behavior of the wavefield at
the point of observation after the arrival of the wavefront. The evaluation of the coefficients
Pl("), Pén) , Qg") and Qg") forms the subject of the next section.

5. RECURRENCE SCHEME FOR THE COEFFICIENTS

Substitution of Eqs. (16) and (17) into Eq. (13), followed by differentiation of the equations
for 1, with respect to z3 and collection of the terms with equal powers of s, results in an implicit
(i-e., with the unknown quantities being defined in terms of themselves) recurrence scheme for
the components of PI(") and Qg"). We find for n = 0

PO = 1vaa + [ 00 PO da, (18)
PO = o, (19)
QP = o, (20)

z5
A @
z3
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andforn>1
PO = [Clon B +0n B ash + ) (a5), (22)
n —1 n— n— n—
B = {en B+ 0 P - R (23)
n 1 n— n-— n—
P = slenef™ +enef™ - a0, (2¢)
= [*lon ) + 020 ast + F (e @)
I3

We have maintained the exact functions ®@y(z3,s) in this scheme because in our case it will
be difficult to obtain accurate approximations of the functions ®7;(3, s) in inverse powers of &
within a reasonably low number of terms. This will be the case since we will employ memory
functions with characteristic times that are small on the time scale that will be used for the
wavefield quantities. Since the summation parts in Egs. (16) and (17) will not only contain
inverse powers of s — as with WKBJ asymptotics — but also the function &(z3,s) and/or its
derivatives 85a(z3, s), we have used the notion WKBJ-like asymptotics in this paper.

To evaluate the implicit recurrence scheme, we assume that on the closed interval between
25 and z3P* the functions @7;(z3, 5), 1/27(z3) and O1(z3, 8)/27(z3) may be approximated by
the following Taylor polynomials

M
01s(z3,5) = Y 07 (s) (23— 25)", (26)
m=0
1 M
~ (m) Y 9
27(23) mz=07 (:B3 23) ’ ( 7)
Or(23,8) _ L (m . S\m
_““—27(23) ~ mZﬂDu (8) (=3 —z3)™. (28)

Now our goal is to find approximate expressions for PI(") and Qg") in the form of Taylor poly-
nomials like L
P"(a3,5) = 3 Pf*(s) (w3 - 5. (29)
=0
Substitution of Egs. (26) - (29) into Eqs. (18) - (25) and collection of the terms with equal
powers of (z3 — 5 ) leads to an explicit (i.e., with the unknown quantities being defined only in
terms of known quantities) recurrence scheme for the coefficients Pl("'i), Pz("'t), Qg"’t) and Qg"‘t) .
For n = 0 we obtain

W24, (£=0)
P]FOJ) = 1 -1 ( ) (0‘ 1) ) (30)
m W—m—
720 P » (E21)
m=0

PY =, £>0), (31)
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ng,t) = 0, (£>0), (32)
_‘12‘ 2 aZy (l = 0)
P = R : (33)
Z Y o P, ez
m=0
and for n > 1 we get
Qg"vo)’ ([ = 0)
Pl(n.f) — . —1 ) o ) — y , (34)
m nd—m— m l—m—
72 01 P +05,' By » (E21)
m=0
4
Pz(n,t) - Z [_Dgln) Pl(n—l,l—-m) _ Dg;n) Pz(n—l,t—m)
m=0
+H(t = m+1)9™ PR > 0), (35)
£ £ 1. (n—1,t-m)
oY = Yo ef M + o) @
m=0
—(£—m 4 1)y Q{n-LbmmE)) (£>0), (36)
P, (£=0)
an,l) = . —1 ( _ () A (nitmrnt) . (37)
Z Y ooy e oY, ez 1)

m=0

It is easy to evaluate this recurrence scheme using a symbolic manipulation program.
6. INVERSE TRANSFORMATION

To elucidate the application of the Cagniard-De Hoop method, as an example we will show
here how to find the space-time domain acoustic pressure below a source of volume injec-
tion. First we remark that the coefficients ©™), v(™) and D{7) consist of terms that con-
tain integer inverse powers of ¥(z5). In many of these terms the memory function a(z§, s)
and/or its derivatives 6fa(z5,s) occur as well. Further, in the present case we find that
G, = —dy = Y~1/2(25) Q5. From Eqgs. (30) - (37) it then follows that P9 and P{™" are
composed of terms of the form C; QS I1(s) Y~1/2(z5) ¥y~ "(z5). Here C, indicates a real con-
stant, the function ﬁ(s) stands for a certain product of the memory function and/or several
of its derivatives, and 7 is a nonnegative integer. Upon applying the composition relation and
Eqgs. (16) and (29), we find that the terms of § are of the form

-~ ~ zobs
§02 Qs (mgbs _ mg)t s I[(s) Y—I/Z(zg)Y-l/?(ngs) -y“”(m§) exp(_‘, fzé’g 7dc)’ (38)

in which Cs is a real constant and £ and n are nonnegative integers. At this stage it is convenient
to write 5 = s2Q5G. The Green’s function G is the acoustic pressure that is generated by a
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source with a unit ramp signature Q5. This Green’s function is composed of a number of terms
of the form C3 s~™ II(s) T(n), with

- Zobs
T(n) = 4572 Y 7/2(@§) Y /228>y (a8 exp(~s 3 7 (). (39)

The constant Cj contains all preducts Cy(z3> — z35)! of the terms of the form (38) with corre-
sponding n, II(s) and 7. When higher-order asymptotics are involved, the task of finding the
constants C3 and each of the possible combinations of =, fI(s) and 7), is almost impossible to
carry out by hand, but forms no problem for a symbolic manipulation program.

The function 'i‘(n) that shows up in each term of G is the only factor that depends on s as well
as on @ and ajy, and only for the inversion of this part we need to employ the Cagniard-De Hoop
method (see Verweij and De Hoop [7] for a description of this method in case of continuously
layered media). In all cases in which our WKBJ-like asymptotics are useful, the result of this
process is

1

Q(t) _ _
Y(n) =55 H(t- Tm)/o Im {¥~2/2(a5) 7 7/2(25") 77(25) B0} dg, (40)

Here, p denotes a (complex) horizontal slowness that satisfies

zobs
t=pr+ : ¥(¢) d¢ = real. (41)
Ty

In both foregoing equations the bar indicates that the vertical slowness has been changed into
F(z3) = [e"2(z3) — p* + ¢*]'/2. The points p that are relevant in view of the Cagniard-De Hoop
method form a so-called Cagniard contour in the complex p-plane. The value of ¢ associated
with the point where a Cagniard contour crosses the real p-axis is indicated by T(q); the unique
inverse of this function for ¢ > 0 is denoted by Q(t). The quantity Tory = T'(0) is the arrival
time of the wave front.

The other factors in the terms of G solely depend on s. The inversion of s is obtained
by inspection. The time domain function II(t) is recognized as the convolution of the relevant
time domain memory functions a(z5,t) and/or its derivatives 85a(e$,t), which are known from
the start. Convolution of the space-time domain counterparts of the factors of each term of G
yields the corresponding contribution to the space-time domain Green’s function G. Once this
function has been found, the space-time domain acoustic pressure follows as p = 62[Q5 % G).

7. NUMERICAL RESULTS

In this section we will present results for the space-time domain acoustic wavefield in a
simplified version of a marine seismic configuration, The quantity of interest is the acoustic
pressure, and the point source is of the volume injection type. The configuration consist of a
homogeneous, lossless upper halfspace (water; the effects of the surface are discarded) and an
inhomogeneous and/or lossy lower halfspace (subsurface geology). This type of configuration
leads to an analysis that is somewhat simpler than the one presented in the previous sections
[we may replace the Taylor polynomials in Egs. (26) - (29) by Taylor polynomials in (z3 — zi®*),
and it suffices to set M = N — 1 in Eqs. (26) - (28) and L = 0 in Eq. (29)]. The acoustic wave
is generated by a source with z§ = 50 m, it reflects from the interface between the halfspaces
at 2if* = 100 m, and it is observed at a receiver with z3%® = 0 m and with the same horizontal

position as the source. The medium parameters are given in Fig. 1. To describe the losses of
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the equivalent fluid in the lower halfspace, we introduce the causal creep function
$(z3,t) = K‘(m3)A(z3)[7culer + Eq(wot) + In(wot)] H(t), (42)

in which A(z3) = 2/7Qo(z3). The symbol E; denotes the exponential integral. The amount of
loss at a certain level zj is inversely proportial to the value of Qo(z3). For angular frequencies
lower than wg, the value of the quality factor @ of the medium is almost frequency independent
and approximates Qo(z3). This frequency behavior of @ makes that the applied creep function is
well-suited for modeling the losses occurring in many types of rock. Further, a source signature
is applied for which it suffices to take wo = 200 rad/s.

Several approximate Green’s functions are depicted in Figure 2, in which the trivial step-
function contribution of the direct wave has been omitted. The value of N indicates the order
of the asymptotic representation. We see that before t =1.5s (unshaded region) the differences
between the subsequent higher-order approximations decrease: for N > 3 they are even indistin-
guishable. We assume that as soon as the latter is the case, the exact Green’s function is arrived
at. However, beyond ¢t = 1.5 s (shaded region) the subsequent approximations diverge. The
fact that useful results are generated only up till a specific time instant is a consequence of the
application of WKBJ-like asymptotics and determines the applicability of the method in each
specific case. When there are turning rays traveling below the interface that arrive earlier than
the rays reflecting at the interface, the first arrival will not be accounted for by the exponential
function in the asymptotics. If this happens, divergence will occur for any time instant.

We can define two other media by either assuming the losses to be absent in the lower half-
space (Qo = 00), or by taking the values of the wavespeed and the mass density in the lower
halfspace equal to those of the upper halfspace. The Green’s functions for the media thus defined
are given in Fig. 3. We observe that near the arrival time the effect due to the inhomogeneity
of the wavespeed and mass density is opposite to the effect due to the losses. This also follows
from Fig. 4, which shows the reflected acoustic pressures in the three media for a source with a
four-point optimum Blackmann signature of 0.1 s duration and unit amplitude.

8. CONCLUSIONS

In this paper we have derived a method for the determination of the space-time domain
acoustic wavefield — and the corresponding Green’s function — in a continuously layered, lossy,
isotropic fluid or equivalent fluid. By using a depth dependent compliance memory function,
intricate losses may be modeled. The form of the transform domain WXKBJ-like asymptotic
representations has enabled us to employ the Cagniard-De Hoop method in a very efficient way.
We have tackled the problem of performing tasks that are almost impossible to carry out by
hand, like the generation of the coefficients of the asymptotic representations, by invoking a
symbolic manipulation program.

Typical numerical results have been generated for acoustic wavefields that are reflected by
continuously layered halfspaces with a depth-dependent loss behavior. For a zero horizontal
offset we have observed that there is an interval, beginning with the arrival time, on which the
differences between the approximate Green’s functions with increasing orders become invisibly
small. In general, for later time instants the subsequent approximations diverge. The method is
applicable for nonzero horizontal offsets, but becomes invalid when the first arrival at the point
of observation is associated with a turning ray. We have shown numerically that near the arrival
time the effect of the losses can counteract the effect of the inhomogeneity of the wavespeed and
mass density.
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Figure 1: The depth dependence of the wavespeed ¢, the mass density p, and the parameter Q,,
as used in the example configuration.
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Figure 2: Several approximate Green’s functions G. For t < 1.5 s the differences between the
subsequent higher-order approximations decrease (unshaded region), while for ¢ > 1.5 s the
subsequent approximations diverge (shaded region).
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Figure 3: The Green'’s functions G for the original medium (solid line), a medium with the
same wavespeed and mass density as the original medium but without losses (dashed line),
and a medium with the same losses as the original medium but with the constant wavespeed
¢ = 1500 m/s and the constant mass density p = 1000 kg/m® (dotted line).
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Figure 4: The acoustic pressures p for the original medium (solid line), a medium with the
same wavespeed and mass density as the original medium but without losses (dashed line),
and a medium with the same losses as the original medium but with the constant wavespeed
¢ = 1500 m/s and the constant mass density p = 1000 kg/m? (dotted line).
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