Theoretical and Computational Acoustics
D. Lee, Y-H Pao, M.H. Schultz, and Y-C Teng (Editors)
© 1996 World Scientific Publishing Co.

Noise Cancellation by Arrays of Active Noise Sources in
Enclosures with Impedance Surfaces

G. Rosenhouse and E. Saski
Faculty of Civil Engineering, Technion-Israel Institute of Technology
_Haifa, 32000, Israel

Abstract

The paper presents a new computer program for calculation and graphical display of
sound fields caused by sound sources in enclosed spaces. For the simulation purposes
the sources include monopoles, dipoles, quadrupoles etc as primary and secondary
sources. We describe the sound field affected by rigid and absorbing boundaries,
introducing the mathematical complexity due to the complex spherical wave reflection
over highly absorbing areas. Next, impedance boundary effects are analyzed by an
exact integral solution where necessary and in other cases by an approximate
formulation based on “image” sources using complex reflection coefficients. The
simulation program is then used to describe sound fields within enclosures containing a
desired number of absorbing walls. Engineering and physical conclusions summarize
the present work, including descriptions of the sound fields of interest.

1. Introduction

Active noise control within enclosures is involved not only with the superposition of
sound fields caused by various sources, but also with reflections which add a diffusive
field to the direct one. This combination increases considerably the complexity of the
sound fields of both primary and secondary sources that serve the Active Noise
Control (ANC). ANC is involved with multi-reflections effects not only because of
the boundaries in the domain, but also due to all other obstacles in the examined
environment that can be influential. Such sound reflections strongly distort the sound
field in a way that might be understood only by a global view of the domain, as will be
demonstrated in this paper.

There are many analysis methods for simulation of sound fields within enclosures.
Basic reference books on room acoustics in this context are those of Cremer, Mueller
and Schultz (1978) and Kuttruff (1976).

These methods include;

Ray tracing methods: The physical fundamentals of the methods and historical
background are given in Pierce (1981). Specific publications on the use of these
methods in acoustical analyses of auditoria were presented for example by Schroeder
(1970), Santon (1976), Krokstad et al. (1968, 1983) and Sekiguchi, et al. (1985).
Image sources methods: Juricic and Santon (1973) and Gensane and Santon (1979).
A more advanced theory, but with the deficiency of too many image sources at high
order reflections was presented by Sakurai (1987), who superposed the response from
reflected sounds from rigid plane panels, using the line integral formulation based on
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Kirchhoff’s formula and Kirchhoff’s boundary conditions. Rosenhouse and Saski
(1995) modified the image source method to enclosures with several sound absorbing
impedance surfaces of high absorption coefficients.

Numerical techniques: Problems with complicated domains, such as obstacles within
the enclosure, are more reasonably solved by numerical techniques like the Finite
Element Method (FEM) combined with modal anaiysis, Migeot (1993) and the
Boundary Element Method (BEM) for steady state and transient fields respectively -
Terai, T., Kawai in the book of Ciskowski and Brebbia (1991).

Modal analysis combined with minimization: See Nelson and Elliott (1992).

In the present paper we apply the image sources method in empty rooms, where the
direct sound and the effect of reflections from the wall surfaces within the enclosures
are taken into account and some surfaces are highly sound absorbing. Various case
studies show the possibility of using the method as an aid for design based on general
understanding of source locations effect and the enclosure shape and properties. It
brings us to concepts of modern control. Toady’s control methodologies enable the
computer “see” by guess technologies more than people can see. The computer can
find today the clear picture of hidden phenomena by techniques of eliminating noise
and observing meaningful clues and dots. The human brain can also draw conclusions
by observing trends and clues, and even to some extent “intuition”. The rest of the
paper develops the technology and illustrates some sound fields created by a
combination of primary and secondary sources, in various configurations, to show
possibilities of active noise control in enclosures, saving a lot of computational
minimization effort.

2. The choice between modal analysis based on rays reflected from impedance
surfaces

A main difference between sound radiation in an enclosure and sound radiation in a
free space is the existence of multi-reflections in enclosures due to the bounding
surfaces, that should be considered carefully. Hence, an essential element in the
analysis of a sound field in an enclosure is the reflection of sound from a sound
absorbing surface. The strength and the directivity of the reflections and the natural
modes of the enclosure depend on the boundary conditions that are attributed to the
bounding surfaces. Both modal analysis and ray theories of room acoustics are possible
and useful for different analysis purposes.

Generally, modal analysis is not common in room acoustics because of the
overwhelming number of eigen frequencies and normal modes involved (about 10
within the audio frequency domain). This situation does not enable an adequate
acoustic estimation for design purposes. To this fact one should add the difficulties due
to possible complexities in the room's geometry, including coupling between rooms
and surface irregularities.

The approach based on sound rays and their reflection may be considered relatively
simple, and we use it to illustrate sound fields in enclosures for Active Noise Control
(ANC) design. The effect of multi-reflections of sound waves from impedance surfaces
and their influence on ANC was discussed in detail by Rosenhouse and Saski (1995 -
Active 95) and Chapter 3. It appears that when the sound absorption coefficient of a
surface is small, it is possible to use an image source, taking into account complex
surface impedance and complex absorption coefficient (Ingrad and Morse, 1968),
which is simple to use. On the other hand, the reflection from highly absorbing surfaces
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is much more complicated and necessitates an exact solution (Thomasson, 1977). The
two types of solutions will be used simultaneously in the next section in order to find a
solution which is within a prescribed margin of error and also reasonably easy and
convenient for use.

3. Sound fields in enclosures with impedance surfaces

A typical room consists mostly of one or two highly absorbing surfaces (walls, ceilings,
floors) while the other surfaces absorb very little acoustic energy - See figure 1 for the
scheme. After establishing the sound reflection model of the various kinds of surfaces
of the room, the comprehensive model of the sound field analysis in enclosure can be
built. That includes all the reflecting surfaces, using geometrical acoustics and
application of image sources. The following assumptions on which this model is based
include:
* Using the principles of geometrical acoustics, reflections of sound from rigid surfaces
are considered mirror reflections. It means that instead of considering the whole
reflector, image sources represent its effect on the interal sound field.
* Reflections from low absorption surfaces are included in the cases where mirror
images are considered. However, under such circumstances the reflection coefficient
becomes complex.
* Calculation of reflections from a hlghly absorbing surface can be correctly derived
only by using an exact solution. The pattern of reflection from such surfaces is usually
very scattered, which justifies the application of the exact solution under those
conditions in spite of the significant increase in the complexity of the mathematical
expressions involved.
* After a sound ray hits a highly absorbing surface, in our mode] the higher order
reflections from the neighboring reflecting surfaces are ignored, since only an
insignificant error occurs This assumption is also a condition for terminating the series
of reflections. Last limitation is schematically illustrated in figure 2.
As a result of the last assumption, the sound field of a room will be derived
considering first and second order image sources, in accordance with its geometry. The
first model of analysis of the velocity potential y in the room.assumes that the room
surfaces are of a low absorption coefficient, which allows for application of an
"approximate method" which will be described latter in this paper. Next we assume
that one of the surfaces (number 1), is highly absorbent, which necessitates application
of the "exact model". In our examples, the source which is located at (x,,y,, z,),
radiates a pure tone of 300 Hz. We assume that the velocity of sound propagation in
air is 340 m/s. The room has a box shape of the dimensions X, Y, Z and a receiver is
located in it at (x, v, 2).
The calculation initiates with estimation of the direct radiation of sound:
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Now the second order reflections are calculated as already given in Rosenhouse and
Saski (1995 - Active 95) and chapter 3 for reflections from two adjacent reflecting
surfaces. However, when the surfaces are parallel we have two possible reflections
instead of one. See figure 3. The resulting formulae are:

Y n =C;nc;w; n=12,..,6
47R .
_Cm cos(0' )—1 .G cos(O'n)—l

m

cacos(6 )+ ™ c, cos(f, ) +1

For parallel surfaces we have the following source receiver distances:
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The angles to be calculated depend on the order of reflection of the rays. This implies
that we have to compare for each case the geometrical measures, D, and DY .
Using those quantities we have for D_, >D? :
h h
cos\0,, ) =—— and cos\f,) =—

mn

Otherwise:

cos((im,) =F}:.,“ and cos(B,,) =II{1—.’.“

The definitions of D__  and D?_ are respectively:
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For parallel surfaces we have:
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The solution for a highly absorbent boundary (surface number 1 in figure 1 follows the
exact representation - see Rosenhouse and Saski (1995 - Active 95). From figures 4, 5
we chose for illustration the situation given in figure 4. This situation yields the
following expressions for calculating the resulting sound field. The total sound
radiation is involved with four components of the velocity potential:

¥ o=y, H, Y, R

The first term stands for the direct radiation of sound:

o= exp(ikR )
0 47R
The second expression is due to the first order reflection from surface 1:
" exp(ikR ) N
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The third expression is the first order reflection from the second surface:
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The last expression represents the reflection of the second order, namely:
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To summarize, the reflection of sound from surface 1 is calculated following the "exact
solution". In its expression, Y, and 1, are terms from the solution shown by
Thomasson, taking into account the effects of the real source S and its image S,. The
reflection from surface 2 is based on the reflection coefficient C,, for the incidence
angle 0,. In addition, Y, and ., are the corresponding terms of the solution
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presented by Thomasson, taking into account the image sources S, and S;,. S, is the
real source suitable for surface 1, after being reduced by the reflection coefficient C.,
for the incidence angle 0.

4. Examples

The aforementioned theory is used now for calculation of some examples of reflections
up to the second order, as discussed below. The active control simulation is
represented here by the set of secondary sources and the superposition of their fields
with that of the primary source. Surface 1 in figure 1 has the following specific
impedance components:

R(c) =9(¢) =14
while those surfaces of low sound absorption acquire the values:

R(¢c) =%(c) =1000
Figure 6 shows the sound field of a monopole within the enclosure. A radial sound
radiation pattern is observed.lt is seen that the decay of sound from the source
outwards is not smooth any more, but some interference obstructions appear close to
the location of the source, and practically disappear at a certain distance.
Now we introduce an additional secondary monopole source in anti-phase with the
primary source, as depicted in figures 7, 8, 9. In figure 7 we observe that the sound
level is reduced in a strip-like domain which is normal to the axis between the sources.
If the additional auxiliary source is moved closer to the primary source, as in figure 8,
stronger attenuation is achieved at points which are far from both sources, and the
domain of higher noise level in the vicinity of the sources becomes smaller. If the
additional monopole is located apart from the primary source, as in figure 9, the sound
field mapping changes significantly, but no general contribution to the noise reduction
is obtained by the secondary control unit.
An introduction of secondary dipole and quadrupole sources as shown in figures 10,
11 yields a slight reduction of the levels of the primary source field at regions far from
the source.
Next, we consider an addition of two secondary monopole sources in the vicinity of
the primary source as in figure 12, each of half the strength of the primary source and
in anti-phase to it. Once again we see that the sound field is reduced significantly.
Finally, a test of five anti-phased monopoles each with fifth the strength of the primary
source were placed in the vicinity of the primary source, as in figure 13. We see that in
this case the sound field is greatly attenuated. This last result is in agreement with the
theoretical approach of canceling the sound field created by a primary noise source.
This theory suggests that a large number of anti-phased sources of exactly the same
strength as of the primary source can cancel the

S. Summary

This paper studies active noise cancellation in a typical room. Such a room consists of
one or two absorbing boundaries, while the rest of the boundaries are practically not
absorbing. The model is based on the following assumptions:

* Reflection from a rigid boundary is taken as an “optical” mirror reflection. Here, the
common “image source” is used.
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* A reflection from a boundary with a low absorption coefficient is involved with a
complex reflection coefficient. Yet, a usual “image source” can replace the reflecting
surface.

* A reflection from a boundary of high sound absorption coefficient necessitates an
application of the “exact” solution, which is characterized by a dispersed reflection.
Some of the results are;

- When an acoustic monopole acts in a room, the radial pattern fits an omni-
directional source, but it is not characterized by the ever decreasing circular domains,
emanating from the source. First, the levels decrease, and then overcome a number of
disturbances, to become virtually constant at a certain distance from the source.

- adding secondary sources in an anti-phase leads to the following results:

a. The sound levels are reduced in a strip normal to the axis between the sources.

b. If the auxiliary sources are moved to the vicinity of the primary source a
significant attenuation is observed in the far sound field, and the domain of high level in
the near field is significantly reduced in size.

- an introduction of a secondary dipole source and a secondary quadrupole source in
the vicinity of the primary source, leads to only a slight reduction in the levels in
regions which are far from the source.

- A significant reduction in the sound field is obtained by adding two secondary
monopole sources which are close to the location of the primary source and are half its
strength.

- five monopole sources surrounding the primary source, each with a fifth of the
strength of the primary source, cause a large attenuation of the sound field. This result
is close to the theoretical approach of annihilating the sound field caused by a source
of noise by surrounding it with a large number of auxiliary anti-phased sources.
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Figure 7. Sound field when a secondary monopole is close to the primary source
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Figure 11. Sound field when a secondary quardrupole is close to the primary source
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MODEL-BASED INTERNAL WAVE PROCESSING

J. V. Candy D. H. Chambers
Lawrence Livermore National Laboratory

A model-based approach is proposed to solve the oceanic internal wave siig'nal processing
problem that is based on state-space representations of the normal-mode vertical velocity and plane
wave horizontal velocity propagation models. It is shown that these representations can be utilized
to spatially propagate the modal (depth) vertical velocity functions given the basic parameters
(wave numbers, Brunt-Vaisala frequency profile etc.) developed from the solution of the associated
boundary value problem as well as the horizontal velocity components. Based on this framework
investigations are made of model-based solutions to the signal enhancement problem for internal
waves.

1. INTRODUCTION

When operating in a stratified environment like the upper ocean with relatively sharp density
gradients, then any excitation that disturbs the pycnocline (density profile) will generate internal
waves that propagate away from this region (Apel,[1]). Internal waves are volume gravity waves
having maximum vertical displacement typically at a plane where the density gradient are largest
and are detectable far above and below this interface (Clay,[2]). They can be generated from tidal
flow against islands, sea mounts and continental shelf edges or surface/internal wave interactions
created displacements in the pyncocline. For instance, a ship traveling along the surface of a
stratified ocean creates various visible wakes: the turbulent or centerline wake, the Kelvin wake
and, of most interest in this work, the surface generated internal waves. Internal waves have been
measured experimentally both in controlled environments as well as the open ocean (Garrett,[3]) and
observed using synthetic aperture radar processing techniques from satellite imagery (Alpers,|4];
Thompson,{5]). From the scientific viewpoint, it is of high interest to understand the effect of
internal waves on acoustic propagation in the ocean [2] as well as the ability to measure their effect
directly using current sensor technology. Military applications are obvious, since a submerged
body moving through the ocean environment disturbing the pyncocline generates internal wave
signatures.

The inclusion of a propagation model in any oceanic signal processing scheme provides a
means of introducing environmental information in & self-consistent manner. Recent work in ocean
acoustics (Candy and Sullivan,[6]) has shown that a propagation model can be imbedded into a
signal processing scheme to solve various enhancement, localization and detection problems. In
this paper, we propose a model-based approach to the internal wave signal processing problem
founded on a state-space representation of the normal mode and plane wave models of propagation.
Specifically, using the normal mode model of the wave velocity field, the vertical velocity modal
functions and the horizontal velocity can be estimated from noisy sensor array measurements in
the following way. First, the propagation model is cast into state-space form. It is shown that this
representation can be used to propagate the modal functions, given the basic parameters (wave
numbers etc.) developed from the solution of the associated boundary value problem. There are
basically two sets of equations in this representation: the state equation and the measurement
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equation. The state equation describes the evolution in space of the vertical velocity modal and
horizontal velocity functions, whereas the measurement equation relates the states to the actual
array measurements. In the stochastic case, an approximate Gauss-Markov representation evolves.
Once this framework is established, as will be shown in what follows, we investigate model-based
solutions to the signal enhancement. We characterize a realizable, recursive processor as shown in
Figure 1 (Candy,[7]; Jazwinski,[8]).

In the next section the state space representation of the internal wave propagation model
is developed for both vertical and horizontal propagation. In the vertical, the so-called “forward
propagator” is defined, while in the horizontal, plane wave propagators adequately characterize
the propagation. Next the measurement equations are developed for both a vertical and then
horizontal sensor array. The state-space model is then explicitly formulated for the case of all
model parameters known where estimates of the velocity field and the modal functions are made
and various noise models can be exercised in order to simulate different sources of modal and
measurement noise. Next a dispersive internal wave model-based processor is designed which uses
a horizontal array of sensors modeling the configuration employed in the Loch Linnhe experiments
performed in Scotland during the summer of 1994. It is shown that the internal wave can be
successfully estimated from noisy measurements. The final section summarizes the results.

Measurement Estimate
Velocity Measurement ;'/;te;nla’B Wa‘:,e State (Wavel) Estimate
— oaei-sase B
Processor Residual/Innovation Estimate
e

Figure 1. Basic Internal Wave Model-Based Processor.
II. INTERNAL WAVE STATE-SPACE PROPAGATION MODELS

In this section we investigate the feasibility of developing state-space propagation models
from the corresponding internal wave dynamics. The development of the wave equation associated
with internal wave propagation evolves from the small perturbation momentum equations under
the assumptions of linearity, incompressibility, zero mean shear, a Boussinesq fluid, flat or slowly
varying ocean bottom, and a horizontally homogeneous or slowly varying density field. Under these
assumptions, the small perturbation component momentum equations governing the propagation
of the wvector velocity field defined are by x(z, ¥, 2, 1) := [u(z, y, 2, )v(z, ¥, 2, Hw(z,y, 2, t)]’ where u,
v, w represent the respective on-track velocity, cross-track velocity, and vertical velocity components
of the vector velocity field.
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The solution to the homogeneous wave equation is accomplished by using the separation of
variables approach (see Apel,[1]) with velocity function given by w(z,y, z,t) = p(z)v(y)d(2)7(t).

where plane wave propagation in the respective horizontial dimensions, ;s and v are identical, ¢
is the vertical distribution and 7 is the corresponding temporal function. Substituting, collecting
terms, etc., it is possible to show that the function associated with each independent variable can be
separated yleldmg a set of coupled ordinary differential equations with the correspondmg separation
constants shown as

L) + K2u(z) =0
Ev(y) + K2v(y) =0
2 4(2) + K2 (N B _1)p) = 1)

Lor(t) +wPr(t) =0

where k. and &y are the horizontal wave numbers with k% = £2+x2, and w? the temporal frequency
(a function of k). These relations describe the dynamics of the vertical velocity component of an
internal wave in a constant depth ocean. It is clear that the first two and last equations above admit
harmonic solutions, that is, u(z) = €=* y(y) = e"¥ 7(t) = e~** while the depth relation is
an eigen-equation in z with

N?%(2)

m

gz%(z) + K ( - 1) dm(2) = m=1,,M )

whose eigen-solutions {¢m(2)} are the so-called modal functions associated with the vertical velocity
component, Ky, is the horizontal wavenumber, N(2) is the Brunt-Vaisala frequency profile (BVP) and
wm is the corresponding eigenvalue associated wtih the m**-modal function. State-space models
will eventually be employed as “forward” propagators in model-based signal processing schemes
(Candy,[7]). Note that this approach does not offer a new solution to the resulting boundary
value problem, but, in fact, it requires that solution be available a-priori in order to propagate the
normal-modes recursively in an initial value scheme.

Since Eq. 2 is a linear, space-varying coefficient (for each layer) differential equation, it can
easily be placed in state-space form where the state-vector for each mode is defined as x, :=
[¢m(z) j‘;gﬁm(z)]’ . Examining mode propagation in more detail, we see that each mode is charac-
terized by a set of ordinary differential equations which can be written as
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%}%(z) = Am(2)%m (2) + Bm(2)um(2) = [ —2 (E,;géﬂ _ 1) (1, ] *m(2) + [ (1) ] un(z)  (3)

where u(z) = %}2 is the source driving function (a scalar in our problem). With the parameters
[{xr}, N(2), {wm}] known, we see that we have constructed a forward propagator for this problem
driven by the source and initial condition vector, x,,(z) for each mode. From linear systems
theory (see Chen,[9)]), it is well-known that the general solution to this equation is governed by the
state-transition matrix, ®(z, 20), where the state equation is solved by

Xm(2) = ®m(2, 20)%xm(20) + /z: O (2, @) B (@) um(a)de, m=1,....,.M (4

and the state transition matrix satisfies

%@m(z,zo) = An()Om(z %),  m=1,...,. M )

with ®,,(20, 20) = I.

If we include all of the M-modes in the model, then we obtain

Az - O Bi(2)
Zxu(®)=| i s ]xw(z)+ [ u(z) ©)
0 - Ay(2) Bu(z)
or simply
Ed;xw(z) = A(2)xw(2) + B(2)u(2) (f)

The general solution to these modal state-space vertical velocity propagation equations are
given by Eq. 10 over all the modes as

x(z) = B(z, 20)x(20) + / 0 (2, 0) Ba)u(a)da @®)
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and as before the state transition matrix satisfies

8 o 20) = Az 20),  B(z0,20) =1 ©)

with q’(z’ ZO) = dia'g[q)l(za ZO), e ,‘I’M(Z, 20)]-

The solutions in the other horizontal dimensions, z, y are also possible in state-space form, if
desired, and take on the same form for each relation with the separation constants interchanged.
For instance, the component v(y) satisfies the following state equations with the state vector defined

as x(y) :=M(y) v

L x(w) = Ayx(0) (10

where

Ay = [ _‘;5 : ] (12)

which gives the plane wave solution of Eq. 7 above. We note that in this formulation the strain rate,
which is an important quantity for radar images, appears as a component of the state vector. Thus,
we see that using the state-space formalism enables us to characterize the propagation (forward)
of the vertical internal wave velocity component which will prove useful for processing. Next we
consider characterizing the corresponding measurement systern.

Sensor technology enables us to measure components of internal wave cross-track velocity at
depth z, v(z,y, 2,t) as well as on-track velocity u(z,y, 2,t). Let us investigate the deployment of
a horizontal array of current meter sensors positioned to measure the cross-track velocity. Actual
sensors sample the cross-track velocity in time at given spatial positions. To obtain the sensor
output we must specify the functions u(z), v(y), and 7(t) as well as ¢,(2). The measurement at
the nt* horizontal sensor at the location (n,yn,2¢) is given by

d .
(st 25 8) = @)V ) () 7(E) = A (i%%(5‘26“”’”"*“"”"‘”‘”“‘*"’”’) (12)

where A is a complex amplitude, and w(ky) is the angular frequency which is a function of the wave
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number magnitude given by, kx = {/kZ + k2. The sensor measures the real part of the velocity
field so we can write (using the magnitude phase form of A)

_lAI K'y d¢( t)

V(Zny Yn, 22, 1) = ——== §in (KgZn + KyYn — w(ka)t +6) (13)

Since we have M-modal velocities, then (as before)

v(wn, Yns 22, t) = ng(ze) (14)

with cf = %0 @yt |1 0 oulepd),  and
Om(Zmy Ym, ) = |Am| sin (KzZn + KyYn — Wm(Ka)t + Om).

Incorporating both the vertical and horizontal state-space representations simultaneously leads
to the set of coupled equations:

2 xw(z) = A(2)xu(2) + B(2)u(z)

(15)
$(z) = Chxu(z)
where CJ = f}e"'/2 01]-] 01
£x(y) = Ayx(y)
(16)
v(gn) = qu;x(y‘n)
with CT =[1 0 |---| 1 0] and the overall velocity measurment is
V(@ Yn, 2,) = VT (Yn) Co(2, t)du(22)
(17

Cu(,1) = diag[Aip (2)1(t) - Amperr(@)aa (2))

which is the equivalent of a two-dimensional measurement taking into account both vertical and
bhorizontal velocity measurements. So we see that the state-space representations enables alot of
flexibility in modeling both the phenomenology (internal wave dynamics) as well as the accompa-
nying measurement systems.
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This constitutes a complete deterministic representation of the normal-mode and plane wave
models in state-space form. However, since propagation in the ocean is effected by inhomogeneities
in the water, slow variations in the BVP and motion of the surface, the model must be modified in
order to include these effects. This can be done in a natural way by placing the model into a Gauss-
Markov representation which includes the second order statistics of the measurement as well as the
velocity noise. The measurement noise can represent the near-field velocity noise field, flow noise on

" the current meter and electronic noise. The modal noise can represent BVP errors, distant shipping
noise, errors in the boundary conditions, sea state effects and ocean inhomogeneities. Besides the
ability to lump the various noise terms into the model, the Gauss-Markov representation provides
a framework in which the various statistics associated with the model such as the means and their
associated covariances can be computed. This completes the state-space respresentations of internal
wave dynamics. Next we investigate horizontal solutions using dispersive plane wave representations
in the next section, develop the model-based processor, perform various simulations and apply the
results to actual measurement data.

III. CROSS-TRACK VELOCITY ESTIMATION

In this section we use a model developed for the nondispersive case [12] and extend it to the
dispersive by including more sophisticated dispersion models based on some empirical results [13]
and approximating the appropriate temporal derivative. To extend these results (approximately)
to the dispersive case, that is, the case where the temporal frequency is no longer constant (nar-
rowband) but varies temporally, we return to the original development of the plane wave processor
of the previous section. Recall that the states were defined as, x(t) := [v(t)4v(t)]T and now from
Eq. 45 with both frequency and wave number temporal functions, we have

v(y,t) = cos(ky(t)y — w(t)t) = cos ky(t)y cosw(t)t +sinky(t)y sinw(t)t (18)

From our definition of the temporal state vector, we have that 7(t) := cosw(t)t and approxi-
mate its corresponding derivative using

%T(i) = —w(t) [1 + %t] sinw(t)t ~ —w(t) sinw(t)t (19)

Defining the notation for the dispersive case, we have for the £t#-sensor

sin ky () ye

ap(t) := cos ky(t)ye, Be(t) := o)

(20)

therefore, the measurement becomes
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v(ye, t) = ce(t) cos w(t)t — Be(t) sinw(t)t = ae(t)na(t) — Be(t)w(t)ma(t) (21)

Next we must develop the relatiohs for the dispersive case. For a plane wave propagating in
the y-direction, the value of wave number at time ¢ is a function of group speed cg(xy), that is,

ve = cg (ry(8)) ¢ (22)

with corresponding temporal frequency w(ky(t), t). Using the Barber approximation [13] for internal
wave dispersion and group speed, we have .

Ky (t) Co

w(ry(®),t) = TF ~y(8)Co/Ns (23)

and
1) = - Co 24
cg(“y( )) - (1 + Ky(t)CO/No)2 ( )

Substituting Eq. 24 for ¢, in Eq. 22 and solving for the wave number at the £th_sensor, we
obtain

Ry(t) = 2 ( 94—1) (25)

Ye

Substituting this result into Eq. 23, the corresponding temporal frequency is given by

wg(t)=No(1—1/g—:t) t>a (26)

Further assuming a bandlimited pulse with minimum frequency w, and observation time at
the £t*-sensor given by

e T )
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and defining the time index as t = fn¢ + tk, tx > 0, then we can obtain an expression for the
temporal frequency as

_ 1 —wy/N, ‘

It should be denoted that this dispersive model is based on the fact that the onset has beeri
detected, that is, the appropriate time delays estimated. In our case we use Eq. 27 to calculate
the appropriate delays once an onset is established at the specified sensor. When we show the
measured experimental data, it should be noted that we selected this onset time and then applied
the processor. A more sophisticated approach would be to find the “optimal” onset based on these
models, but this is left for future work. Now if we return to the central difference form for the
equations, we obtain the approximate spatially-constrained, dispersive state-space representation

[ 1—w(te)?A2 At | 1
—w(te)?At 1| 0
X(tk1) = .. x(tk), (29)
(] | 1—w(te)?At? At

| | w(te)?At 1

and with corresponding discrete cross-track velocity array measurements (in this coordinate system)

ar(ty) —Bute) | o

v(ti) == .. x(tk) (30)

o l athk) —B(tk)

In this coordinate system the initial condition vector is given by
; 1 .
0
x(to) = o , (31)
cos(ky(L — 1)A) + w(tx) At sin(ky (L — 1)A)
L w(ty) sin(ky (L — 1)A) ]
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With this approximate dynamic dispersive model, we developed a Gauss-Markov simulation

with the corresponding frequency and wave numbers varying temporally according to the dispersion

- relation. This presents no particular problem in the Gauss-Markov formulation, since it can support

nonlinear dynamics as well as nonstationary statistics. We performed the simulation with the same

basic set of parameters and the results for a —13dB SNR. were quite successful indicating an optimal
design.

Next we consider the application of the dispersive model-based processor to an internal
wave field experiment performed in Loch Linnhe, Scotland in September of 1994 (Mantrom,14);
Robey,[15]). The general objective of this experiment is to examine the relationship between mod-
ulations observed in radar images and ship generated, internal waves by fusing the data with that
measured by an array of current meter sensors. Loch Linnhe is a narrow, salt water estuary located
on the west coast of Scotland which possesses favorable subsurface environmental conditions (strat-
ification) which are conducive for the generation and propagation of internal waves. The internal
waves are generated by surface ships with concurrent oceanographic measurements (temperature,
salinity, BV frequency, meterology, etc.) performed by other vessels in the Loch. Internal waves
are typically imaged by airborne radar systems employing synthetic aperture radar techniques;
however, this experiment concentrated on real aperture radar images of the waves from low-grazing
angle marine radars positioned on the surrounding hillsides and an array of current meter sensors
which provide measurements of hydrodynamic currents associated with the internal waves. The
Lawrence Livermore National Laboratory (LLNL) current meter array (CMA) measurement plat-
form consists of ten (10) standard S4 current meters uniformly spaced at 3.75m, longitudinally,
creating a 34m aperture, positioned at a depth of 2m and sampled at a 10sec rate. The CMA is
positioned to measure both cross-track and on-track velocities. A typical measurement is shown in
Figure 3a, where we see the output of each sensor channel typifying the phase front of an internal
wave and subsequent ambient noise.

We processed the Loch Linnhe expermental data using the dispersive rather than plane wave
processor and the results are shown in Figure 2. Here we see the differences in using the dispersive
over the nondispersive approach. First, the processing doesn’t really begin until the “onset” has
begun and then the MBP utilizes the dispersive model, until that time a simple random walk
model is employed (constant + gaussian noise). Next we note that each internal wave component
temporal signal is clearly visible especially those which meet the onset criterion established by
the dispersion relation. Those non-propagating wavefronts are attenuated quite heavily. We see
the enhanced internal wave propagating across the array based on the onset and all other events
attenuated significantly. We note the overall selectivity of the MBP to events that “match” both
its dispersive signal model as well as onset. This completes the development of the dispersive MBP
for internal wave enhancement and its application to experimental data, we summarize our results
and place them in perspective.

IV. DISCUSSION

We have developed the model-based approach to processing internal waves. It was shown
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Figure 2. Dispersive Wave MBP Design for Loch Linnhe Experimental Array (10-elements): (a)
Preprocessed Sensor Signals (s7r1). (b) Enhanced Sensor Estimates.
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how to develop the underlying state-space representations of the internal wave propagation model.

In the vertical, a normal-mode propagation model resulted, while in the corresponding horizontal
plane wave propagation models were developed. Since our primary motivation was to process
measurements from a horizontal array of current meter sensors, we developed the horizontal (plane
wave) processors for both the nondispersive and dispersive cases. After using the model to develop
Gauss-Markov stochastic simulations, the model-based processors were designed using the extended
Kalman filter (EKF) algorithm [7] for signal enhancement. After designing the MBP, the minimum
variance estimates were shown capable of extracting the desired wavefronts from simulated data
quite effectively.

We then applied the various MBP to sets of dats gathered from experiments performed in
Loch Linnhe, Scotland during the summer of 1994 [14,15] and the results are quite promising. It
was shown that the nondispersive plane wave MBP. was capable of selecting all wave fronts that
matched the correct temporal frequency and prescribed onset arrival times while attenuating all
others. The dispersive MBP design approximated the true dispersive solution for slow changes in
temporal frequency and appears to be a more effective approach, since it depends heavily on the
pre-specified wavefront onset arrivals at the array and therefore is more discriminating then the
nondispersive design.
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