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Abstract

In a previous work, Collino and Joly [9] have constructed new 3D paraxial approximations
that are compatible with the use of splitting methods without loss of accuracy. We present
here new higher order numerical schemes to solve these equations in an heterogeneous medium.
The dispersion effects observed by using classical second-order schemes can be considerably
attenuated, even with a very few number of discretization points per wavelength., We also show
how to adapt the method developed by Berenger for Maxwell equations in order to get absorbing
layers on the lateral sides of the domain.

1 Introduction

Paraxial approximations constitute a good approximation of the wave equations when the waves
propagate around a privileged direction. In many applications, one of the variable appears naturalty
as the privileged direction (2 in geophysics, [6], 7 in ocean acoustics, [19]) and becomes an evolution
variable. In the following, as we are mainly interested in geophysical applications, the evolution
variable is the depth z. The classical way to discretize these equations consists in using a Crank-
Nicolson scheme in the depth direction and second order finite differences for the derivatives in the
lateral variables. In the 3D case, each extrapolation step requires the inversion of quite difficult
and expensive linear systems (see Joly and Kern [13] and Kern [14]). This can be avoided by
using the new higher order paraxial approximations constructed by Collino and Joly [9], which
are compatible with splitting methods. The novelty of their approach in comparison with classical
alternate direction methods ([5, 11, 17, 10]) is to introduce other directions for the splitting than
the usual cross-line and in-line directions which allow to get forty-five degree and sixty-degree
approximations. It reduces the problem to a series of 2D extrapolations in each direction of splitting.
They have presented these new equations for constant velocities, but there is no difficulty to extend
them to the case of heterogeneous velocities, following the criteria given by Bamberger and al. [2].
The observations of results obtained with the classical second-order numerical schemes have pointed
out some dispersion effects of these numerical schemes, especially for large angles of propagation
(with respect to the depth direction) and we propose here some new higher order numerical schemes
that attenuate these effects.
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The aim of this paper is to describe a systematic way to get accurate discretizations, both in
depth and in the lateral variables to solve the 3D paraxial equations with splitting methods, in
heterogeneous media.

The paper is organized as follows. In the first section we make some brief recalls on the classical
paraxial approximations and set the PDEs associated to the new paraxial approximations. We also
show how the method developed by Berenger [4] for Maxwell equations can be adapted for the
paraxial equations, to achieve a quasi-perfect absorption of the waves on the lateral boundaries.

In section 3, we explain how to get higher order discretizations in the depth variable with the
procedure presented by Kern (see [14]) for the full 2D paraxial equations based on a conservative
Runge-Kutta method. Section 4 presents the discretization in the lateral variable with variational
finite differences techniques. With these techniques, the variable coefficients are easily taken into
account. The classical way to improve the accuracy is to use higher order discretizations of the
derivatives in the lateral variables. However, this increases quickly the band-width of the linear
system to be solved. We present a family of “modified” schemes of order 2n that cost the same
price than the classical (2n — 2) order scheme. Numerical experiments show how the dispersion is
attenuated with higher order schemes, especially with the modified schemes.

2 The continuous problem

2.1 The classical paraxial equations

Paraxial equations are approximations of the one way up-going wave equation
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where 9 denotes the Fourier transform of » with respect to ¢ (time) and z1,z5. They are obtained
by replacing the square root in (1) with rational fractions so as to transform this non local integro-
differential equation into a local Partial Differential Equation, this approximation being valid as long
as ¢|k|/w remains small enough, i.e. as long as the wave propagates close enough to the z-direction.
A general class of well-posed high order approximations has been proposed by Bamberger and al
[1] and leads to the following system of (L+1) coupled PDEs , written in the frequency domain
(since paraxial equations are usually handled in the frequency domain)
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Here L specifies the degree of the approximation and ¢, are auxiliary unknown functions introduced
so as not to deal with a high-order PDE.

Classically, we handle the transport term exactly, with the Claerbout change of unknown func-
tions u = ve?/¢, and after elimination of the auxiliary unknown functions, end up with the
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following system (written in operator form)

= (2)
).

Since the evolution operator is written as a sum of simpler operators, it is a natural idea to
use a splitting method to solve (2). Section 2.4 describes the algorithm in more details. Let us
_ just mention here that, after discretization in depth, we have to solve, at each depth step, 2 linear
system, with a large, sparse, complex valued, non-hermitian matrix. Kern [16] has proposed to use
modern iterative methods to solve it. We investigate here an alternative way to avoid the difficulty
altogether, by introducing a new class of paraxial equations suitable for use with splitting in the
lateral variables, and requiring only the solution of 1D PDEs.

2.2 New paraxial approximations

Using splitting in the horizontal variables is not a new idea. In order to avoid the inversion of
the large matrix when using the full paraxial approximation, several authors [5, 11, 17, 10] have
advocated approximating the square root with

(error : O(k2k2)),

which is consistent with the forty-five degree equation (i.e., with an error &~ O(|s|®)) only in the
%1 = 0 and kg = 0 directions.

The basic idea to get better accurate approximations involving only one variable per fraction is
to introduce more than two directions of splitting. The paraxial equations constructed in Collino
and Joly [9] are derived from an approximation of the square root with rational fractions of the
following form

(1= |87 = (1= (5} + K3)/? ~ 1 = R(s1, 52),
with
L bt( K. )2

R(K’) J_Zl; _ l(lﬂi ns )2 (3)
where Np corresponds to the number of directions, I the number of fractions per direction, and
n; the unit vector associated to the j** direction (nj = (cos @j,sin;)). It has been shown in [9]
that the conditions on the coefficients 'af > 0 bt > 0 ensures the well-posedness of these paraxial
equations. Also, in order to keep the a.pproximation error in the square root from blowing-up in
certain directions inside the unit disk x3 + k% < 1, it is natural to impose 0 < ae <1l

Collino and Joly [9] have constructed several families of approximations of the above type so as
to achieve comparable accuracy to the classical forty-five (error &~ O(|«|®)) or sixty degree (error =
O(|x|®)) approximations. In particular, they obtained a family of forty-five degree approximations
depending on one parameter using four directions of splitting (Np = 4) uniformly distributed -
namely 1, 3,21 + T2,21 — T2- and one fraction per direction (I = 1). For instance, the choice
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aj = 1/3,b; = 1/4,i = 1,...,4 gives them the “maxi-isotropic” forty-five degree approximation.
More examples are given in the above paper.
The paraxial equation corresponding to (3) can now be written in a form analogous to (2):

——1—C-ZEA£u—

=1 1—1 ‘(4)
Aju, = —b‘(—~ + a,‘D2 '1D2

where D; = n;-V is the derivative in the jt* direction. Each of the operators A in (4) only involves
2 one-dimensional differential operator. Thus this new family equation lends itself to a splitting
method in the horizontal variables, but as mentioned before, the splitting has the advantage of
being consistent with the forty-five degree equation (for a proper choice of coefficients).

In practice, a mesh being given in the (z1,z;) plane, there will be two main choices for NV D!
Np = 4 if the mesh is built from squares, and then the directions are given by the two coordinate
axes and the two main diagonals, or Np = 3 if the mesh is built from equilateral triangles, and the
3 directions are 60° apart. Using more than 4 directions permits to get higher accuracy but would
imply additional difficulties for the discretization which are beyond the scope of this paper.

In the following, for the sake of simplicity, we only consider the forty-five degree approximation
family with Np = 4 directions and L = 1 fraction per direction and we denote the corresponding
coefficients and operator by a;,b; and A;.

2.3 Extension to heterogeneous media and design of absorbing boundary con-
ditions

The extension to heterogeneous media as well as the treatment of the absorbing boundaries are
simply obtained by using similar modifications on the operators.

Paraxial equations in heterogeneous media have been proposed and analyzed by Bamberger and
al. [2]. Their approach was to define several criteria (both mathematical and geophysical), and to
select among a general class of possible candidates the one that satisfied those criteria.

Their result gives a recipe which allows one to extend any paraxial equation to heterogeneous
media. Thus equations (4) keep the same form, with a new definition for the operators 4;

w2 c\~1 ¢c
Aju = ~bj(— +a;67)776;

and we have defined 67 = %.-Dj(cD,').

A problem of practical importance is the treatment of the lateral boundaries. It must be
designed in such a way that the waves are absorbed when they reach the boundaries. Recently,
Collino [8] proposed to adapt a novel technique, introduced for electromagnetism by Bérenger
[4]. This technique consists in designing an absorbing layer model called perfectly matched layer
(PML). It pussesses the astonishing property to generate no reflexion at the interface between the
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free media and the artificial lossy medium, and the reflected waves are only due to the discretization
of the model. This property allows one to use a very high damping parameter inside the layer, and
consequently a short layer length, while still achieving a quasi-perfect absorption of the waves.

Practically, the PML is very easy to implement : we replace the velocity ¢ in the operators 4;
and 6 defined previously by ed(z) with d(z) = m and o(z) is a positive function with
support in the damped area. We close the system with a Dirichlet boundary condition at the end
of the layer. The efficiency of the method has been assessed by numerical experiments : a quasi-
perfect absorption has been obtained with only 4 extra-nodes at the boundary and an appropriate
choice for o (see figure 2).

2.4 Splitting

We briefly recall some classical points about splitting methods (see [18]) which are specifically
designed for the solution of ODEs in the form (5). The exact solution of (5) satisfies

z+4z 4, Np
u(z+ Az) = exp(f - > Ajdz) u(z) .
z Jj=1
The splitting methods consist in approximating the exponential of the sum of operators with the
product of exponentials

z+Az 4, 2+Az 5,
Uap(Z + Az) = exp /z TAND dz ) x -+ X exp /z —C—Aldz u(z), (6)

which is second order accurate with respect to the discretization in the z variable, in the general
case of an heterogeneous medium (in such a case the operators A; do not commute). Approximation
(6) then leads naturally to define Np intermediate unknowns w’,j = 1,..., Np satisfying:
dw; 1w
— }——Aj'w]' =0
dz c . (7)
wi(0) = wj_1(Az) = wi™t .

Finally we have ugy(z + Az) = wD | :

Problem (7), to be solved at each step, is still an evolution problem in depth, but with a single
operator. In the next section, the discretization in the evolution variable is performed in order to
get a high order semi-discretized scheme.

3 Semi discretization in depth

We assume in the following the velocity to be independent on z between z and z + Az (for
instance, ¢(z1, %2, 2) = ¢*(z1, z2) for z € [z",2"1]). The discretization in the depth variable used
here has been initially proposed by Joly and Kern [13]. It is based on the fact that the exact
solution of (7) satisfies w’ = €'<4i%%y=1 and ou the relationship between Runge-Kutta methods

and Padé approximations to the exponential (see for instance [12]). In order to get conservative
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schemes of order 2K, the exponential is replaced with a Padé approximant on the following form

14 sz
exp(iz) & H T+ s’

where 7 are appropriate complex numbers and 7 is the complex conjugate of r;. The integration
from 0 to Az is then done formally as follows

K
w = [T+ 7eAzd;) (T + reAzd; w2
k=1

This procedure leads us to define K intermediate unknowns wi’l associated to each fraction,
solutions of
I+ rkAzA,)wH_l = (I + rpAzA)wi™

We then set w’ = 'w};'»' 1

The classical Crank-Nicolson second-order scheme is obtained for K = 1 and r; = ¢/2. Kern
[15] has shown that this process can also be used to get non conservative schemes, which generalize
the f-scheme to higher order schemes.

Finally, one elementary step requires the solution of systems of the form

(T+diw)s5)U=F.

There remains the task of discretizing the 1D operator with respect to the lateral variable. We
devote next section to specifying how this approximation is achieved.

4 Discretization in the lateral variables

In view of section 2.4, we now take for simplicity one particular direction, which we denote
by z. The domain € is an interval in R and for clarity we make the presentation with Dirichlet
conditions (but there is no difficulty to do the same with the PMLs). Thus we have to solve

Z—Z—%w:O in Q
2 0 (8 .
‘-fc—-ga-i- % <c5—5 (a<p+bw)) =0 inQ (8)

We base the discretization of (8) on a variational formulation, which we recall below. This pro-
vides us with a systematic treatment of heterogeneous media, in a way that insures good numerical
properties (i.e., convergence and stability). We set

. . B 1 i (9?1.31)
(u,v)=/s;uvda: ; m(u,v)—./n-c-uvd-’l’ i k(u,v) = _/ 6m6z
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With these definitions, problem (8) admits the variational formulation

d 13
Find (w, ¢) such that (W, x) = wm(p,x) =0 Vx

wzm((Pa 'lp) — k(ap + bw, P)=0 V.

The discretization is built upon a variational finite differences method. It consists in approx-
imating the operators with operators of finite difference type. Let us introduce some notations.
The domain is discretized by a regular grid (z; = iAz) and we define the shifted grid by the nodes
(%412 = (i +1/2)Az = (i + 1/2)h). The approximation is then decomposed on the functions
Xi Where x; is the characteristic function on [2;_1/2,%i11/2]. Since the functions y; are constants
per element, one can define the (diagonal) mass matrix as M} = m(xi, x;), but one has to give a
meaning to the derivative terms in the stiffness matrix. This can be done by approximating the
derivative with a finite differences operator. Let D. be the usual second-order finite differences
approximation of d/dz, i.e., Dg(z) = ¢(z +¢) — ¢(z — €), we deﬁne an approximation of d/dz,

denoted by 6[2"'], as a linear combination of the form 6 - ZVPD(2p—1)h/2 which is of order

2n provided that the coefficients satisfy the Van der Monde like system

n
Z vp(2p — 1)2’°"1 =6 forl1<k<n.
p=1

This leads to the stiffness matrix K;; 27 = (¢ 2”])(,, [2n] x;) = (E21y;, x;) (here k27 is the notation
] §

for the operator (q‘),[L2 " )*(ca,[f”‘])). The 2n-order classical scheme uses these two matrices and thus
leads to the solution of the linear system
dw

Bn ko =
P wM o, =0

(w2ba* — akBr]) oy = b By,

We propose here another family of schemes, the modified schemes, that can be seen as an
extension of Claerbout’s scheme [6] to higher orders. It consists in using a linear combination
2n) — aM* + (1 - @)U, of two different mass matrices M* and U*"], where U[*"l comes from
a 2n-order finite differences approximation of the operator identity (see below). The linear system
associated to the modified schemes can then be written as
dw

Wh v =
. wM o, =0

' (9)
(szc[,z"] —aK [2"]) on = bK12rlwy,
Tt is important to keep the diagonal mass matrix M* in the first equation as we will have to invert
it when we eliminate ¢. On the other hand, one will show that a proper choice of a allows us to
gain two orders of accuracy when compared to the classical discretization. The classical schemes
correspond to the particular choice a = 1in (9).
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Let us explain in more details how we derive U™, We use the same kind of procedure than
for the stiffness matrix, and set I, the finite difference operator approximating the identity, i.e.,

Lé(z) = l(q&(::: +e)+ ¢z — 5)) We define an approximation of I, denoted by 6[2”], as a linear

combination of the form &;; f2n] _ Z tpI(2p-1)r/2 Which is of order 2n provided that the coefficients
p-l
satisfy

Eup(Zp— 1)2("‘1) =6 forl1<k<n.
p=1

There is a very simple relation between the coefficients », for the approximations of 6‘,[3"1 and p,
for the approximations of 6L2n]

bp=2p-1y 1<p<n. (10)

[2n] _ (5 [2n]

This gives the approximate mass matrix U;™ = (= 6h Xi,0; "X;), and the resulting combination

ME™ = aM* + (1 - a)UP is still a 2n-order apprommatlon (again we denote by mE™ the

associated operator equal to 21 + (1 — a)(6}, 2"])*(1 [2n])) To determine the order of the resulting
scheme (9), we consider a smooth solution (w, ¢) of (8), and perform a Taylor expansion, to get

(w2m[3“] k[2"]) @ — bkl = —(p + c (acp + bw)

6271

+h2n6 =

[ 2 (1 )0y + o0 T (a4 b + 00,

where C?"] and ngn] are constants computed thanks to Taylor expansions with respect to h (we
omit the details). The first term in the RHS is exactly the equation satisfied by (w, ) and thus
vanishes. The order of the scheme is therefore at least equal to 2n. Moreover, one again recognizes
0[2“]
0[2"]
and hence we obtain a 2n 4 2-order scheme with that particular choice for a. Finally, relation (10)

the same equation between the brackets for an appropriate choice of @ which is & = al?" = 1—

provides an explicit expression for this value, ol? = T From a practical point of view,

relation (10) is very useful, since it is sufficient to compute a 2n-order approximation of d/dz to
get at the same time the 2n-order approximation of the identity.

With n = 1, the modified scheme corresponds to the classical Claerbout’s scheme [6], with the
relation 7 = (1 — @)/4. The corresponding value a!?! = 2/3 leads then to the well known v = 1/12
choice and gives a fourth-order scheme with a matrix of bandwidth equal to 3 instead of 7 for the
classical fourth-order scheme. For n = 2 and o = 4/5, we get a sixth-order one with a bandwidth
equal to 7 instead of 11 for the classical sixth-order scheme. The drawback is that the analysis
through a priory energy estimates, that can be made for the classical schemes to show their well-
posedness, is not valid anymore for these modified schemes in heterogeneous media (although it
still applies to homogeneous media)(see Collino {7]).

Before closing this section, let us write the total discretization. System (9) can be rewritten
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after elimination of the auxiliary function as

%’1 = iwM* (W2 ME™ — oK) p Ky, (11)
The discretization in depth is introduced as in section 3, and we finally end up with a set of linear
systems of the form

Skwk41 = Skw

2 —
with S = (%—Mg?”] — KPYy(Mr)t 4 rk#.(( (27] and 8} its complex conjugate.

5 Numerical results

We will illustrate the method with two examples. For both examples, we consider the migration
of a point source, the source being located on the surface. The computational domain is 1250 m
in each of the horizontal directions, and 625 m in the vertical direction. The grid sizes are h =
Az = 12.5 m. The first simulation is done in a 2D heterogeneous medium (see figure 1), the
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Figure 1: Smooth heterogeneous medium

central frequency of the source is around 28 Hz, and the cutoff frequency around 76 Hz.

The second simulation is done in a 3D homogeneous medium with velocity equal to 1000m/s.
We use the forty five degree paraxial equation with 4 directions and 1 fraction per direction,
characterized by the coefficients a; = a4 = 0.27, by = by = 0.3 in the directions z; and z; and
ay = ag = 0.41, by = b3 = 0.2 in the diagonal directions. The central frequency of the source is
around 20 Hz, and the cutoff frequency around 50 Hz. Both tests are relatively severe since the
number of points per wavelength at the cutoff frequency is around 1.5.

As announced in section 2.3, figures 2 show that the reflexions on the lateral boundary due to
Dirichlet boundary conditions have almost completely disappeared using PMLs of size equal to 5h
(notice that this experiment corresponds to the heterogeneous case).

As explained in section 4, the main drawback of modified schemes compared to the classical
ones is to achieve the same accuracy for a lower price (lower bandwidth linear systems). Moreover,
the numerical experiments show their superiority from a dispersion point of view as can be seen on
figures 5,6 and this is confirmed by a dispersion analysis (see Bécache et al [3], for further numerical
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MODEL 6 : scheme 3x2z MODEL 6 : scheme 3x4z
w5 Prcacly biknd Loyws thpu)
i
ol
—
-
-
M aor e
(a) 5 PML ; 2nd-order in z (b) 5 PML ; 4th-order in z
Figure 3: Modified 4th-order schemes in 2
MODEL 6 ; scheme 5x2z MODEL 6 : scheme 5x4z
o =
il oo
E il = o
an. an W e
= =
| e -
(2) 5 PML ; 2nd-order scheme in z (b) 5 PML ; 4th-order scheme in z

Figure 4: Modified 6th-order schemes in 2
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Figure 5: Classical and modified 4th-order schemes (2nd-order in z)

(a) Classical 6th-order in z and 2nd- (b) Modified 6th-order in z and 2nd-
order in z order in z

Figure 6: Classical and modified 6th-order schemes (2nd-order in z)
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(4th-order in 2) (4th-order in 2)

Figure 7: Fourth-order schemes in z
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experiments and for the dispersion analysis).

The simulations in the heterogeneous 2D medium, and for Az = Az, show a still good improve-
ment when we use a modified 4th-order discretization in z instead of a 2nd-order one (compare
Figures 2(b) and 3(a)) and even better when we also use a 4th-order discretization in z (see Figure
3(b)). Nevertheless, the improvement is not clear when we increase the discretization order in z
until the order 6 (see Figure 4).

In the second example (3D homogeneous), again the gain is really important by using a 4th-order
discretization in the lateral variables instead of a 2nd-order ome. But this time the improvement
using a 4th-order discretization in z is not obvious (compare figures 5(b) and 7(a) for the 4th-
order modified scheme and figures 6(b) and 7(a) for the 6th-order modified scheme) although the
dispersion is much more attenuated with the modified 6th-order schemes (see figure 6(b) for the 2nd-
order discretization in z). Also one should notice in the homogeneous case the quite good isotropy
obtained with these new paraxial equations despite of the introduction of particular directions used
for the splitting.

These two examples lead to different conclusions concerning the optimal choice for the scheme.
In order to better understand the behavior of the different schemes, we analyze in [3] their dispersion
relations. This helps to choose the scheme with respect to the frequency, the number of points per
wavelength... Of course, since we want the result in the time domain, we have to handle with
a quite large number of frequencies and the optimal choice is not the same for all of them. A
possible way for further improvements could be to adapt the choice of the numerical scheme to the
frequency.

6 CONCLUSION

We have presented a way to solve efficiently and accurately new 3D paraxial equations that
lend themselves to splitting with respect to the lateral variables in a consistent manner. This
gives rise to the solution of a sequence of 1D linear systems for each splitting direction. This is
done in a rather general context that handles heterogeneous media as well as the treatment of the
lateral boundaries. The numerical dispersion occuring with the classical second-order schemes can
be considerably attenuated with the use of the modified higher order schemes, even with coarse
discretization grids. '

One should also compare the efficiency of these equations with the full paraxial equation. This
is work in progress and will be the subject of a forthcoming paper.
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