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Abstract: Stair-step discretization criteria have been established for accurately repre-
senting smoothly varying bathymetry changes in numerical models. It is shown that the
strictest criterion applies to backscatter calculations, where the horizontal stair-step size
must be a small fraction of an acoustic wavelength (Ar < A/4). The forward scatter
problem — assuming that backscatter is weak — can be accurately solved with an order-
of-magnitude larger step sizes. A coupled-mode approach is used to illustrate solution
convergence by computing backscattering from a single bottom facet in a shallow-water
waveguide. Published field solutions for the ASA benchmark wedge are used to illustrate
forward scatter results.

1. Introduction

The use of small stair steps (Fig.1) to represent smoothly varying bathymetry in
ocean waveguides is common to most numerical solution techniques (parabolic equa-
tions, coupled modes, finite differences) employed today to solve range-dependent
propagation and scattering problems [1]. It is assumed, of course, that the discrete-
problem solution converges to the smooth-problem solution for an increasing number
of stair steps. The issue to be addressed here is how many stair steps are required
to obtain a smooth-problem solution. Physically one expects that the steps must be
small (in some sense) compared to the acoustic wavelength, and we would like to de-
termine how small, and whether the same criteria apply to forward and backscattered
field calculations. The issue is important since the computational effort involved in
computing a full two-way field solution increases quadratically with the number of
stair steps used in discretizing the bathymetry variations.

2. Plane-Wave Scattering at Stair Steps

2.1 BACKSCATTERING

A simple model of the scattering process can be established by assuming that each
stair step acts as a point scatterer, and that the full stair case consequently acts
as an array of point scatterers. This is schematically illustrated in Fig.2, where
we consider a bottom facet with slope 8, approximated by a number of stair steps
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with horizontal spacing Az. The incident plane wave is taken to be horizontally
propagating. :

It is well known that a sparse array of point sources can have several diffraction
lobes corresponding to directions of phase coherent radiation by all elements of the
array. Only if the array is dense enough, i.e. element spacing less than A/2, is there
only one diffraction lobe, which in this case would correspond to a specular reflection
of the incident plane wave in the direction ¢ = 180 — 26. For large stair steps and
hence large element spacing, there are several directions in which the scatters radiate
in phase.

With reference to Fig. 2, it is easy, from simple geometric considerations, to de-
termine the directions ¢, for all possible diffraction lobes. We just write down the
conditions for the path length difference Az + d being an integer number of wave-
lengths, that is

COS((IDH+9)=COSQ|:Z_2_1]3 n=0a1723"' (1)

It is clear that if we have several diffraction lobes contributing to the backscattered
field, the solution is wrong. Only the fundamental lobe n = 0 has physical meaning

for a smooth bottom facet. The criterion for having only one diffraction lobe is found
from Eq. (1) to be

cos @ [—2—33—1]>1, (2)
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For small slope angles, this criterion is seen to be equivalent to the A\/2 element
spacing of a dense array. In practice, a slightly stricter criterion must be adopted
to include steeper facet slopes. The numerical results presented in Sect. 3.1 indicate
that Az < A/4 is an appropriate discretization criterion for facet slopes of up to 60°.

2.2 FORWARD SCATTERING

Plane-wave scattering from stair steps in the forward direction is illustrated in Fig. 3.
The physical process is here quite different from the one outlined above for backscat-
tering. Thus, forward scatter is associated mainly with reflections off the horizontal
interfaces of length Az, whereas contributions from the vertical steps of height Ay
can be ignored.

The mean facet slope is again 6, and the incident plane wave is tilted downwards
¢ with respect to horizontal. Reconstructing the phase front for the reflected wave,
we see that this wave is not ‘plane’ as it would have been, had it been reflected
from a smooth facet. Instead, the wavefront is ‘ragged’ with sharp discontinuities
corresponding to adjacent rays reflected from different stair steps. Note that the
propagation direction corresponding to a ‘mean’ wavefront (dashed line in Fig. 3)
forms an angle of ¢ + 26 with the horizontal, as would a specularly reflected plane
wave from a smooth bottom facet of slope 6.

The question is how distorted the wavefront can be before the specular reflection
picture breaks down. It is reasonable to assume that the wavefront distortions must
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be small compared to a wavelength, or, from simple geometrical considerations,

A .
y<< 2singp 4

This criterion can be written also in terms of Az as

A

Az << —F—— .
e 2sin tan @

(5)
It is easily seen that allowable step sizes for forward scatter are several wavelengths
for the standard small-slope problems encountered in ocean acoustics. In Sect.3.2
we quantify the above discretization criterion for forward propagation in the ASA
benchmark wedge, and compare to published numerical results.

3. Numerical Results

The acoustics literature reporting numerical solutions for forward scatter in range-
dependent ocean waveguides is abundant, and it is not difficult to find examples
that illustrate the effects of coarse stair-step approximations on solution accuracy.
However, when dealing with backscatter the situation is quite different. A concerted
effort to generate accurate numerical solutions for backscattering in ocean waveguides
due to bottom features of different shapes and heights was initiated just recently
[2,3]. As of today few published numerical solutions are available for checking the
effect of stair-step discretization on the accuracy of computed backscatter in ocean
waveguides.

To generate accurate numerical solutions for backscatter in a Pekeris waveguide
with a single bottom facet (Fig.1) we employ a coupled-mode code (COUPLE)
developed by Evans some years ago [4]. This code was recently updated to include a
‘sponge’ layer deep in the bottom [5], thus improving the computational performance
by a factor 20-50. COUPLE was successfully applied- to a series of benchmark
problems involving backscattering [2], and is considered a reference code for this
-type of work.

3.1 BACKSCATTERING

We consider the test problem shown in Fig.1. The environment consists of a 200-
m deep shallow-water waveguide bounded above by a pressure-release surface and
below by a penetrable, homogeneous fluid bottom. The water column is isovelocity
with e = 1500m/s. The bottom properties are cg = 1700m/s, ap = 0.5dB/),
and pp = 1.5g/cm®. We consider a 2D problem with translational symmetry in
the y-direction. The obstacle is a 35-m (7 \) high protrusion on the bottom placed
1.5km downrange and having the same acoustic properties as the seabed. Thus there
is only one scattering facet, namely the front-end of the protrusion. The source is
a 300-Hz Gaussian beam directed towards the scattering facet. As shown in Fig. 4,
this beam provides a uniform insonification of the front-end of the obstacle.

For a facet slope of 30° we shall investigate the effect of the stair-step discretiza-
tion on the computed backscatter. An accurate total field solution is displayed
in Fig.4, and it is clear that energy is scattered primarily in the forward direc-
tion. This reference solution is done with 150 stair steps across the facet, i.e.
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Az = 7)/(150 - tan30°) ~ A/12. Hence, this is an accurate sampling compared
to the earlier derived discretization criterion of Az < A/4. Additional results for
scattering from a single bottom facet may be found in a companion paper [3] ad-
dressing the effect of height and slope of the facet on the strength of the backscattered
field.

‘We now turn to a display of just the backscattered field computed for the 30°-
facet discretized by an increasing number of stair steps (NSS). The first set of results
are given in Fig.5 for NSS = 10, 11, 12 and 14. Thus, in the upper display there
are 10 stair steps, and we see two backscattered beams marked n=1 and n=2. If
we compute the angles associated with the diffraction lobes for this case as given by
Eq. (1), we find o = 120° (the specularly reflected beam going forward and not seen
is the display), ¢1 = 68.6°, and @, = 25.6°. The angles computed from our simplified
scattering model are in excellent agreement with those determined form the full field
display. By increasing the number of stair steps the two diffraction beams become
more horizontal, and for NSS = 12 the 2nd-order beam shoots straight back at the
source. In the lower graph with NSS = 14, the 2nd-order beam has disappeared
(passes though lower endfire of the scattering array), and we are left with only the
1st-order beam. Since this beam is steeper (52.3°) than the critical angle at the
bottom (28.1°), little energy is propagated back to the source.

The next series of field plots for NSS = 17, 20, 24 and 30 are shown in Fig. 6. Now
it is the 1st-order beam that moves to smaller angles and provide strong backscat-
tering for NSS = 24. Finally, when the number of stair steps is 30, also the 1st-order
diffraction lobe disappears, and we are left with only the zeroth-order beam, which
is specularly reflected in the forward direction. The very low backscatter levels seen
in the lower panel is the only result here that resembles the correct solution for a
smooth facet.

By computing the mean intensity over depth (0-200m) of the backscattered field
at the source range, we can summarize the convergence process for increasing num-
ber of stair steps in a single graph, see Fig.7. Note that we generally have high
backscatter levels (~ 45dB) for Az > \/2 followed by a rapid transition to much
lower levels (~ 90dB) for Az < A/4. As explained earlier the high backscatter levels
are caused by coherent backscatter into higher-order diffraction lobes associated with
a sparse array of point scatterers. The oscillatory pattern is a critical-angle effect,
and low backscatter levels are seen for instance for NSS = 14 (Fig.5). Clearly, the
high backscatter levels are the result of using too few stair steps for representing the
smooth bottom facet. The appropriate discretization criterion is Az < \/4, with
a smoothly converging answer for an increasing number of stair steps. Often this
criterion will provide satisfactory solution accuracy, but for benchmarking purposes
even smaller steps may be required, Az = A/10 to A/20.

As s further example of solution convergence, we show in Fig.8 the computed
mean backscatter level for a facet slope of 60°. In this case the specularly reflected
beam is in the backward direction (¢ = 60°). The facet hight is again 7 A, but
since the horizontal extent of the facet is shorter, fewer stair steps are required
for an accurate solution. The transition from stair-step scattering to smooth-facet
scattering is again seen to occur rapidly, with a level drop of around 35dB.

The standard approach to ensuring accurate numerical results is by increasing
the number of sample points (stair steps) until the solution converges. In the present
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case, such an approach could lead to a completely wrong result. Thus computations
with NSS = 2, 4 and 8 would give almost identical answers, but it is the solution to
a ‘rough’-facet problem of some kind. The answer to the posed scattering problem
involving a smooth facet is obtained by using Az < \/4.

3.2 FORWARD SCATTERING

If the general scattering problem due to changing bathymetry involves strong backscat-
ter, then the full two-way field solution will require stair-step discretization according
to the earlier sampling criterion, i.e. Az < A\/4. On the other hand, if we are deal-
ing with small-slope problems where backscatter is weak, then the forward solution
can be accurately computed in a single-scatter approach (backscatter neglected),
and much larger stair steps are generally permissible. In Sect.2 we derived a dis-
cretization criterion, Eq. (5), which shall be tested on the ASA wedge benchmark
[6]. |

This test problem involves a sloping-bottom environment with the same acoustic
parameters as given in Fig. 1. The water depth changes from 200m at the source to
Om at a range of 4km. The bottom slope is 2.86°, and the outgoing field solution
is sought for a frequency of 25 Hz (A = 60m). The original benchmark solution was
generated with NSS = 200, or Az = A/3 [6]. Subsequently Collins [7] showed that
very accurate forward solutions to this problem could be obtained with just 40 stair
steps, or Az = 1.67 . Even the double step size of Az = 3.33 A gave fairly good
results.

Let us see if our discretization criteria for forward scattering, Eq. (5), can be
reconciled with these numerical results. First of all, the angle ¢ of the incident
field must be determined. Since the step length decreases with increasing angle ¢,
a conservative estimate is obtained by using for ¢ the highest propagation angle of
importance in the problem, i.e. the critical angle of 28.1°. We find from Eq. (5) that
the step size Az must satisfy the criterion Az << 20 ). Assuming that it is sufficient
to decrease the upper limit by an order-of-magnitude we obtain Az < 2 A, which is
in agreement with the numerical results of [6,7]. Note that forward-scatter problems
generally can be done with much larger stair steps than backscatter problems, which
means that forward problems are computationally easier, often by 1-2 orders of
magnitude in CPU time.

4. Conclusions

By using a simple plane-wave model of scattering from a series of stair steps approx-
imating a smooth bottom slope, we established discretization criteria for accurate
numerical solution of the facet scattering problem. The strictest criterion was found
to apply to backscatter calculations where the horizontal step size must be smaller
than A/4 to guarantee accurate numerical results. Actually, a completely different
stair-step scattering problem is solved if the step size is larger than \/2. The transi-
tion from stair-step scattering to facet scattering occurs rapidly for A\/2 > Az > /4.
For small bottom slopes where backscatter is weak, the forward problem can be solved
with much larger horizontal steps, often of the order of several wavelengths.
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Figure 1: Schematic of Pekeris waveguide with a single-facet protrusion on the seafloor.

Figure 2: Geometry for computing coherent backscatter from individual stair steps.
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‘Ragged’ wavefront

Figure 3: Geometry for computing coherent forward scatter from individual stair steps.
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Figure 4: Beam insonification of obstacle placed on the bottom 1.5km from the source.
The contour levels (from black to white) are 30 to 60dB in steps of 5dB.
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Figure 5: Backscattered field for different number of stair steps (NSS) across the 30°
bottom facet. The contour levels (from black to white) are 40 to 61dB in steps of 3dB.
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Figure 6: Backscattered field for different number of stair steps (NSS) across the 30°
bottom facet. The-contour levels (from black to white) are 40 to 61 dB in steps of 3dB.
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Figure 7: Mean backscatter level as a function of the number of stair steps used for
approximating the sloping bottom facet (§ = 30°).
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Figure 8: Mean backscatter level as a function of the number of stair steps used for

approximating the sloping bottom facet (§ = 60°).






