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2D and 3D Propagation Modelling with Coupled Modes

E. Noutary and A. Plaisant
Thomson Sintra ASM, Departement de Sophia, 525 route des Dolines,
BP157, 06903 SOPHIA-ANTIPOLIS Cedex, France

A numerical modelling of two and three dimensional acoustic propagation in inhomogeneous
oceans with variations of bottom depth and sound speed profile, based on coupled modes
theory is presented.

The model still under development and evaluation called "MOCTESUMA" includes
computation in 2D of the direct and backscattered field in the water column as well as in the
sediment layer supporting shear waves.

In 3D, a geometrical approach is used to describe transmission and reflection effects in the
horizontal plane, but presently, there is no shear in the sediment and in order to achieve
reasonable computing time, other simplifying assumptions are made; nevertheless the model
has the capability to work with a complex bottom topography described by iso-depth contours.
An analysis of the limitations of the model is performed by comparisons with published
benchmarks in 2D and by comparisons with other models results in cases of range variable
velocity profiles.

* This work has been partly funded within the European Community framework of the MAST programme (DG
xm.

I INTRODUCTION

A first attempt by Thomson Sintra ASM (TS.ASM), France, to model 3D diffraction effects
due to propagation over a variable depth ocean was undertaken under the European
Community MAST1 project "SNECOW". This effort was carried on under programme
MAST2 with the project "PRO.MODE", where this time, the propagation modelling effort was
shared with several partners: FORTH in Greece and Technical University of Denmark. Two
major techniques to model 3D propagation where examined: the Parabolic Equation and the
Coupled Modes method with objective to find respective limitations and validity domain.
This paper presents the principal results obtained by TS.ASM with the Coupled Modes
method and concentrates on low frequency shallow water forward and backward propagation
effects due to bottom topography, which is known as beeing the most important effect in
shallow waters.

. Before going to 3D propagation modelling, it is natural to start investigating the bottom effect

in 2D and, in particular, the {nfluence of shear waves in the sediment layers. The main
innovation of TS.ASM method is the possibility to compute the backscattered field including
shear waves in range variable environment. This is done in pragraphs II to V, starting with
the theoretical bases of the Coupled Modes method including shear, to finish with
comparisons with other numerical codes in classical configurations such as stratified ocean
and fluid bottom variations.
In paragraph VI, the 3D case is considered. Test cases with a sinusoidal bottom for which
published results are available are presented. Comparisons are made between these results and
two versions of TS.ASM software corresponding to different approximations. Finally, the
problems encountered with the method are reported.

II LINEAR ELASTICITY IN STRATIFIED MEDIA
IL1 - Modal expansions.
In this section, concepts and notations used to establish theoritical developments needed for
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evaluating the acoustic field in wave guides including shear are presented. All these concepts
can be found in details in reference books such as, for example Ewing et al [1] and
Brekhovskikh [2]. In oder to evaluate the displacement vector U in elastic layers, it is
convenient to define a scalar potential ¢ and a potential vector ¥ such that:

U=V$ +YAX . ¢ is the compressional potential scalar and ¥ is the shear

compressional vector. If coupling between compressional and shear waves due to continuous
varations with depth of shear velocity is neglected, the two potentials ¢ and ¥ satisfy wave
equations in each layer of the waveguide (see for example Ewing et al [1] and Arvelo et al
[6]). Under axisymetric assumptions and assuming that no SH waves can be excited (in the
present work, only the cases of monopolar sources located in the water column are treated),
the only interesting component of vector ¥ is ¥, and we can define W such

that: ¥, = -ov . The two potentials ¢ and \ are solutions of the wave equations
z or

M- 5 e ae T

In cases of harmonic sources, using a technique of sepafation of variables and notations
defined by Koch et al [3], the potentials ¢ and y may be described as a superposition of depth
eigenmodes given by:

$(r,2z) = Y R,(r)u,(z) and Y (r,2) ZR ) vy (2) eq.1

. . OR
where the range functions R, satisfy: %61( 5 n)+k 2R, =0 (r20)
and the depth eigenfunctions satisfy:
uy + k2u, = k2u,  and v+ k2v, = k2v,

Since harmonic sources are considered, dependance in time has been omitted and ' denotes
the derivation along variable z. In the previous expressions k° denotes the eigenvalue
associated with the eigenfunctions u, and v,; k,=/c, is the wave number associated with the
compressional waves and k, =a/c, is the wave number associated with the shear waves

Expressions of the displacement vector components: denoting g, and w, the following

quantities: @, = u, + v; and w, = u) + k2v, ,
the components of the displacement vector U take following form:
dr,
Ur =Ean;' Uz =EWan
n n
Expressions stress tensor components used bellow: denoting p, such that:

Dy = 2qh + kz2v, , componexits of the stress tensor P used bellow take the following

form: P, = wzzkz =



24, dRn
rk? dr
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Therefore,all physical quantities can be expressed in terms of functions u, and v, and their

derivatives in case of homogeneous stratified media

Expression of the acoustic field in the water column: propagation loss for a harmonic source

at depth z, in the water is given by the usual expression 20 log (|p(r,z) |) where (see for

example Brekhovskikh [2] and Ellis et al [4]):

(2 0y (2)

plr,z) =iz Yy ZalZ (k)

N, a
(In the water column no shear wave is excited and the water density is assumed to be 1). The
constant normalisation N, of the couple of modes (u,,v,) can be obtained using Cauchy's
theorem (residues in the complex plane, see for example Ellis et al [4]) or directly if a bilinear
form <., . > satisfying the two following properties:
1) < (S(Z-ZO),O) > (um’vm) > = um(zo) for all m eq.2
2) < (u,,V,) , (W,v)> = 0 for m#n  (orthogonality condition), eq.3

can be founded; in this case we have: N, = <{u,, v,) , (u,, vy)>

In the case of a fluid bottom, the bilinear form is simply the scalar product:

Uy, Up> = fp(z) u,(z)u,(z) dz .

In the case of an elastic bottom, the bilinear form is more complicated because of more
complex continuity conditions between layers. Such a bilinear form is derived in next section.
112 Orthogonality condition between modes.
The orthonormalisation condition of a set of eigenfunctions in an elastic wave guide has been
established by Auld [5] and Koch et al [3]. The authors assume real values of wave numbers
k, and k, which is not valid if volumic attenuation, wich is an important effect, is introduced.
Therefore another "closed”" condition is derived which tumed out to be identical to the one
of Ellis et al [4]. The derivation is presented here because it is simple, similar to the fluid
bottom case and it helps understanding the Galerkin method used for the case of non
homogeneous layers (see section I1.3)
Notations and assumptions: the wave guide is assumed to be horizontally stratified (a water
column overlying sediment layers) bounded at the top (z=0) by a free surface and at the
bottom (z=b) by a perfectly rigid substratum, ‘
(u,,v,) denotes a couple of eigenfunctions (u, for compressional waves and v,
for shear waves).
a(.,.) and b (.,.) denote two symetric bilinear forms defined by:

b b
a(u,, u,) = f pk2uu, - puguy dz ad b(v,, v,) = f pk2v,v, - pviv) dz
0 0
For any given function f(z) continuous in each layer of the wave guide we define
{f} such that: { £} = - E [£],, + £(b) - £(0)
z
where [f], is the jump of f; z is the depth of the i® interface; b is the depth of the

bottom of the wave guide.
In order to obtain orthogonalisation expressions, we integrate by parts the expression of a:
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b
0 = alu,, u,) - alu,u,) = (k2 - kZ) f puu, dz - { puju, } + { pulu, }
[+]

In the case of fluid botttom, the terms in brackets are equal to 0 (boundary conditions plus
continuity of pressure: pu, and of the vertical component of displacements vector: u,' ). This
shows that the orthogonality condition is simply:

b

fp(z) u,(z)u,(z) dz = 0
0

In the case of elastic layers, continuity conditions between layers are more complex and
additional terms containing value of v, and of v,' are needed. These terms can be obtained

b
integrating by parts expression of b: b(v,, v,) - k2 f pvv, dz = - { pvavy}
[4]

Using the symetric property of the form b and noting that p(u,w,-k,2v.q,) is continuous
through each interface, we find:

b
0 =(ky-kz) |b(Vpu V) + [ pugty dz +{pg, v, + PV, &y}
0

Integrating by parts, we obtain an other expression for this equation:
b
0=fp(qm.qn+L";&+"'+f")dz for m#n eqd
0
If we define a bilinear form by
b
AUy Vi) o (U, V) = f [ ( Ty + 222+ "'T"") dz for m#n
0
we find that this bilinear form satisfy equations 2 and 3. The constant normalisation is then:

b
Nn = f P ( qg + Vn'pn) dz eq.5
0

Remark: Koch et al [3] find an orthonormalisation condition of the form:

(g Vi g V) = [ (@t + BE 4 ) a
s [¢]
(8., denotes the Kroneker symbol). This expression is identical to expresion 4 for real
eigenfunctions. Let us examine the case of complex eigenfunctions. For real k, and denoting
f* the complex conjugate of a function f, the function (u,w'-k,” v,q,).p is continuous
through each interface. Under this assumption similar calculations than the ones presented
in this section lead to:

b
f p (kpz"kpz*) umu,: dz = (k;ﬁ'kl;z) J(uml Vi Up, Vn)
0

Then, if k, is not real, orthonormalisation condition defined with J may fail.



Equation 4 does not define an orthonormalisation condition because values of the bilinear
form <,,> may be complex. Nevertheless, as it is shown in the paper published by Ellis et
al [4], the proper definition of the constant N, is the complex value defined in equation 5.
IL3 A Galerkin method for inhomogeneous Iayers.

In cases. of vertical dependence of the sound speeds c,=c,(z) and c,=c,(z) in each layer, the
search for eigenvalues and eigenfunctions is achieved through the following procedure:

- We first assume that we have already calculated the orthonormal set of
eigenfunctions (u,,,v,,) associated with the homogeneous layers case such that the two
constant values of compressional and shear waves speed in the j" layer (cp; and cs;; z,<2<z),
are given by:

p(z)es - p(z)es® = [p.c’]; and epa=c,(z") (2~0) eq.6
([p.c’] denotes the jump of the depth function p(z).c*(z)). k,, and k,, denote the wave
numbers associated with these sound speed profiles (constant in each layer),

- The calculation of the eigenfunctions (u,v;)and eigenvalues k? associated with the
complete problem is achieved by expanding them on the basis of the eigenfunctions (u_,,v.,)
already calculated and the eigenvalues of which are k.

Denoting q,,,W,, and p,, the following quantities:

/ . / = / 2
qmn=ucm+vcm 4 Wcm=uan+kanzvcm and pcm_ZqC!m+kscucm’

each eigenfunction in layers containing compressional and shear waves has to be described
as a couple of eigenmodes. The modal expansion of (u,v)) is expressed as follows:

(u;, vy) = E ap, {Ugps Vop)  Using the same technique than the one presented in section
n;

I1.2, and the continuity of p(u W,k 'v,q..) and p(uw_.-k>v_,q) at each horizontal intexface

the search of eigenfonctions (u,v;) and eigenvalues k? associated with the case of a

horizontally stratified waveguide with heterogeneous layers reduces to the search of the i

eigenvector {a )} and eigenvalue k? of the matrix (M, + k2, 8,,) with:

b b
Moo = [ POKS = Kio) Ungllen d2 + Ky [ p( K = Ko ) VenVin dz eq.7
[¢] 0

I A 2 WAY COUPLED MODES TECHNIQUE INCLUDING SHEAR

IN NON STRATIFIED MEDIA,
Like in the case of a fluid bottom, the mode coupling technique is obtained by using the
orthogonality condition of mode families associated with two horizontally stratified
subdomains Q, and Q, and writing the continuity of physical quantities. In the case of
elasticity, U, P, P are continuous along the vertical boundary between the two subdomains
and U, is continuous in the sediment layer.
IIL1 Assumptions.
In order to extend the mode coupling technique to include shear waves, we first begin to
make a far-field approximation: we will neglect terms decaying as 1/r in range (compared

29, dRn

with terms decaying as 1/\/r). Then
rk: dr

= 0 in expression of P_ (section

I.1). Moreover, under this assumption, Hankel functions can be approximated with
exponential functions.
L2 Use of orthogonality condition to derive coupling matrices.
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In the far field approximation, the "orthonormality" condition gives:

b

Db,
f[Prrqn - p(’)zUz—%
o k,

-}

b /
o) dr
dz=-w? R, ;dPrngw\pszr(g;E%)]dzzcoz—d—r" eq.8

These two equations are the basic relations of the 2-Way coupled modes method
In order to obtain these relations, we use the modal expansions of P_,P,,, U, and of U, . An
easy way to obtain previous results is to note that:
K? k2 5 bl ¢

T = 2P LV i Wy =GPt V, and [p% U, dz = - [pz—% U d:
IIL3 - Expressions of coupling matrices.
In this section we derive an expression of the backscattered and transmitted fields due to a
single vertical discontinuity of the wave guide located at a range r,.
Notations: let us denote Q, and Q,, two subdomains of the wave guide, z and z,, are the
respective depths of water columns associated with (z>z,,). In order to distinguish the
subdomain in which are developed the following calculations, all the quantities previously
defined will now be indexed by j. In order to simplify the following expressions, we
respectively define vectors A, B, the components of wich are given by:

an(ro) = gy (Io) eiknjzo + pnj(ro) e'ikujrﬂ = Anj+an

dR,;
dr
Coupling matrices: in the case of a vertical discontinuity in the wave guide, a backscattering
wave arises. Using the far field assumptions, writing the continuity of P,,P,, and of U, along
the depth interface, noting that U, is continuous in the sediment layer, and using equation 8
we can define four coupling matrices M;,M,,M; and M, such that:

AitBy =M, [ Aj*B; ] AptB;, = M, [ A/+B; ]

(rg) = ikyf Gny(zy) e™™ - B (r)) e %) = ik, (a,;-B,)

eq.9
Aj-Bj = M3 [ Ajﬂ'B)’H ] Aj+1 -Bj+1 = M4 [ Aj'Bj ]
the coefficients of wich are:

b b
P+ P+
Ml,nm = fdz pj+1 qmj+1 an - g L pmj+1 qnj/ + f dz "'TJ mj+1 pnj
0 ksj+1 zy ksj

b
p
- f dz —I'c—zj— pmj qnj+1l

b
p .
My, an fdz P Ty o+ + —;7:1' Wi P+l
0 k zy 57

s7+1

k

. k.
= my +1 = mj
M3,nm Mz,mn and M4,nm k Ml,mn
nj nj+1

Remark: in the case of a fuid bottom, expresions of the coupling matrices reduce to the ones
classically obtained (see ref [7],[8] and [9]).

Like in the fuid case, equation 9 show that a good evaluation of the inverse of matrix M, is
M, and then, a similar technique than the one used in the fluid case can be used to evaluate
the reflection and transmission matrices. By definition of transmission and reflection matrices,
we want to determine the matrices R,, T, such that B=R,.A, and A;,,=T,.A; when B;,=0 and
R,, T. so that A =R,.B,, and B=T.B;, when A=0. Because R, and R, are an extended
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"reflection coefficient", it follows that all the modulus of their eigenvalues lie in the interval
[0,1]. So we evaluate R, using the inverse of the matrix R,'=I+R, and we obtain:
R,=2(I+MM)"-I and T, =M, (I+R)
R,=I-2(I+M,My)" and T,=M, (I+R)

IV 2D NUMERICAL APPLICATIONS
IV.1 herizontally stratified media.
As it has been presented in section II-3, in cases of depth dependence of the sound speeds
¢,=¢,(2) and c,=c,(z), eigenfunctions are expanded on a basis of reference mode functions. In
the actual version of our numerical code, the reference mode functions are the ones associated
with a two layered wave guide (homegeneous water column and sediment layer) bounded, at
the top, by free surface and, at the bottom, by a rigid substratum.
Knowing that perturbation techniques fails for taking into acount attenuation effects in case
of propagation in elastic media (see [8]), the Galerkin method described aboved is also used
for solving this problem (attenuations effects may be introduced by adding depth dependent
imaginary parts to ¢, and c,). 4
Propagation over an homogeneous sediment layer: many tests of our model MOCTESUMA
have been succesfully performed against output from SAFARI and W+IEFL codes (see [8]
and [10]). A representative example taken from reference [4] is presented bellow:

Source: frequency 64 Hz, depth 37 m. Receivers from 0 to 25 km depth 72 m

Water column: sound speed constant from 0 to 28 meters (1508 m/s) and from 45 to
104 meters (1494 m/s) with a linear transition.

Sediment layer homogeneous and infinite; density 2.2; compressional sound speed:
2400 m/s, compressional attenuation: 0.24 dB/A; results for 3 values of shear sound speed
1000 m/s; 1100 m/s; 1200 m/s; shear attenuation 1dB/A.

-40.0
-60.0 —
-~80.0 —
]
<
—100.0 —
-120.0 — PN
0.0 50 100 180 200 280
x (km}
figure 1 figure 2

figure 1 displays SAFARI results while figure 2 display MOCTESUMA results.

These results are typical of propagation over elastic sediment layers in presence of constant
or downward refracting velocity profiles in the water column: transmission losses may become
considerable (dashed curve in figure 2 represents transmission losses considering chalk
basement). As it is shown in figure 1, results are very sensitive to shear speed in the
sediment: if we consider transmission losses up to 100 km as it is the case in published paper
[4], variations from 1000 m/s to 1200 m/s of shear speed induces variations of about 110 dB
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in transmission losses (from -360 dB to -470 dB)! These variations are depending on the
source frequency: same variations of shear speed induces variations (at 100 km in range) of
about 40 dB in transmission losses at 128 Hz (from -180 dB to -224 dB) and of about 10 db
at 256 Hz (from -120 dB to -130 dB) Moreover, when running MOCTESUMA with no
attenuation in shear, transmission losses are comparable to the fluid case.

Propagation over inhomogeneous sediment layers: Galerkin method has been successfully
used to take into account variations of sound speed in the water column and attenuation
effects in both water and sediment layers. Since to our knowledge, there is no published
reference solution for the case of non constant velocity profiles is sediment supporting shear
waves, we take, with MOCTESUMA, a sediment layer with a sharp variation of
compressional and shear velocities and compare with SAFARI results, replacing the single
sediment layer by two isospeed layers, the transition being at the depth of the strong gradient
in the MOCTESUMA layer. The following example comes from the SAFARI user's guide
[10] :
Source: 30 Hz, depth 50 m. Receivers from O to 5 km depth 100 m

Water column: sound speed profile 1500 m/s at Om, 1480 at 30 m, 1490 at 100 m
with a linear transitions,

Sediment layer 1: homogeneous; density 1.8; thickness 20 m; compressional sound
speed: 1600 m/s, compressional attenuation: 0.2 dB/A; shear sound speed 400 m/s; shear
attenuation 0.5 dB/A.

Sediment layer 2: homogeneous and infinite density 2; compressional sound speed:
1800 m/s, compressional attenuation: 0.1 dB/A; shear sound speed 600 m/s; shear attenuation
0.2dB/A.
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On figure3, the continuous curve represents SAFARI results while MOCTESUMA results are
plotted with the dashed curve. In order to obtain these results the reference eigenfunctions are
the ones associated with the following 2-layered wave guide:

- Water column: constant sound speed 1500 m/s.

- Sediment layer : homogeneous; density 1.8; compressional sound speed: 1600
m/s, compressional attenuation: 0.2 dB/A; shear sound speed 400 m/s; shear attenuation 0.5
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dB/A.

Results presented here indicates that the Galrkin method described in section II-3 can
be succesfully applied for even strong variations of sound speed profiles.
IV. 2 Backscattered field in non stratified media
We consider now the backscettering from a variable depth bottom consisting of a simple stair
step. The fluid parameters are the same as in the stair step case of "Benchmark solutions for
backscattering in simple wave guide geometries” published by F.B.Jensen et al [12]:

deepest water depth 200 m

size of the step 50 m (located at 1.5 km of the source)
compressional speed 1500m/s in the water 1700m/s in the sediment
density 1 in the water 1.5 in the sediment
attenuation (in compression) 0.5 dB/A in the sediment
Shear parameters in sediment layer:

shear speed 800m/s attenuation (in shear) 0.5 dB/A

The source is a monopole located at an immersion of 100 meters (frequency: 25 Hz).
Because, to our knowledge, no reference result including shear waves has been published, we
only compare the backscattered field obtained with and without shear in the sediment in
figures 4 and 5 (receiver depth 50 m on figure 4 and 170 m on figure 5).

F = 28 Mz f e 28
SO « 100 m SO e 100 m
RDs 50m RD = 170 m
18 20 o 08 10 1.8 2
Ronge (km)
figure.4 figure.5

In both cases, the two curves which are very similar represent the published results (fluid case
- coupled mode method and boundary element method), the third curve displays backscattered
field in presence of shear. We can notice that, near the obstacle, the structure of the reflected
field is the same in both cases (with and without shear). In order to obtain this results, care
have to be taken: in presence of shear in the sediment, the structure of the reflected field is
very sensitive to the number of modes used (all the propagative modes have to be calculated)
especially when the shear speed in the sediment is small.

V 3D EXTENSION FOR FLUID SEDIMENT LAYERS

V.I Description of the methed.

When the horizontal wave number vectors A of the incident sound field are not perpendicular
to the bottom steps, the problem becomes three dimensional and horizontal deviations are to
be expected on the transmitted and reflected field. These horizontal deviations will be
accounted for in new reflection and transmission matrices as explained below.

By analogy with the classical plane wave, we will call "horizontal plane wave" carried by the
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single vertical mode W,, the solution of the Helmholtz equation which can be written as

P(x, ¥, z) = aneihncosex e.zl.nsmey Tn (z)

In order to describe the reflection and transmission phenomena over a bottom step, we first
consider the case of an incident plane wave impinging the frontier of the subdomain , with
an horizontal grazing angle 0, The frontier is assumed infinite and straight along axis y; z
denotes the variable associated with depth variations.P, , P, and P, are respectively denoting
the incident, reflected and transmitted waves:

Pi (x,y, Z) =a e.i/\n(sineix*cose,y) P (Z)
n n

P (x,y,2) =Y, b, e Huxihn? @ (7) P,(x,y,2) =Y, Ck gllberto?) @ (z)
m k

Continuity of the Fourier transform along variable y of the Helmholtz equation indicates that
the wave numbers associated with the variable y must be equal for P, P, and P, so that, 9,
denoting the grazing angle associated with the reflected plane wave carried by the mode ¥,
(associated with the horizontal wave number A, such that A,> = A,,> + A,.”) and 0, the
grazing angle associated with the reflected wave carried by the mode @, (associated with the

A cosf,,

horizontal wave number , such that p,” = p,” + p,”), should be as: _A—; " ~osb, and

A cosf . . ‘ . . ..
Zm - Z77 tk  The ratio of the horizontal wave number associated with the incident

[T cos0;
plane wave and the horizontal wave number associated with the part of the reflected wave
carried by the m™ mode is equal to the ratio of the cosines of the grazing angles of the
incident plane wave and the plane wave carried by the m® mode of the reflected field. The
same observation may be done in the case of the transmitted field.
Like in the 2D case, in order to evaluate the coupling matrices, let us define the

vectors A,B and C by their elements: ~ a,. e 27, gitsin®iX §  (nis the incident

b. ei}.,,cosei.y. e-i;\m.xo

mode number), n and  cy. @ A0y

1V gme X
etV ¥

We also define matrice D, the only non nul coefficient of whichis (D,) 5, = 1A,8in6,

and two matrices Dy and D such that: (D) oy = ~1AL8,; 3 (Do) m = IPmdm

Keeping the same notation as for the 2D case for the coupling matrices M; and M,, the
continuity of both the acoustic pressure and the component along the variable x of the
displacement vector can be formulated in terms of the following system:
A+B=M,C C=M, (A +B)
and
D,A+Dy;B=M,D.C D.C='M, (D, A+D;yB)
By defining R, such that B=R A and T, such that C=T,A, similar calculations than in the 2D
case give: R, =[-Dy''M;D. M,]" [I-D;'D,] -Tand T, =M, (I+R))
In this way we can evaluate the reflected and transmitted acoustic field due to an incident
plane wave (carried by one vertical mode) impinging a straight line bottom step with a
grazing angle 6, Two important remarks have now to be made:



1) The coefficients of the transmission and reflection matrices are depending on the
grazing angle O, and on the horizontal wave number A, associated with the vertical mode
carrying the incident plane wave.

2) An horizontal incident plane wave (carried by only one vertical mode) allways
excites several different reflected and transmitted horizontal plane waves, each having their
own propagation direction. Therefore, the treatment of even a simple configuration as one
incident wave carried by n modes impinging one straight bottom step with a grazing angle
6, requires an important computing space and time because one have to add the contribution
of n® transmitted and reflected plane waves having their own propagation angle.

In order to reduce the complexity of this exponentially growing process, given that a
large number of steps have to be considered in realistic situations, simplifying assumptions
must be made. Analysing the structure of coupling matrices see ref [9], we can observe that
an incident plane wave excites in transmission waves which may be classified into two parts:
one associated with water to water and sediment to sediment transmission (ww-waves) and
another one associated with water to sediment or sediment to water transmisson (ws-waves).
The "directions" of ww-waves may be interpreted as a spreading around the direction
associated with the incident plane waves while the "directions" of ws-waves may be
interpreted as a spreading around a direction which may be evaluated with the Snell law. For
reflected waves, only a spreading around specular direction has to be considered. In
MOCTESUMA 3D it is assumed that the direction associated with the transmitted field is the
same than the one associated with the incident field and that in reflection, only the specular
direction is considered. The advantage of this is the gain in CPU time (examples below). The
main disavantage of this method is that horizontal deviations due to bottom variations or
sound speed variations are not taken into account.

In order to obtain more accurate results, we are currently testing a new version of the
numerical code MOCTESUMA 3D. In this version, a new direction associated with the
transmitted field is calculated at-each encountered interface and for each incident plane wave.
This direction is the one associated with the plane wave carried by the most excited mode in
transmission. The advantage of this method lies in the fact that when the size of the steps
used to describe the wave-guide tends to 0 it constitutes a good way to approximate the
solution: one incident plane wave excites only one transmitted plane wave having its own
propagating direction but, this approximation is valid only for small variations of the
bathymetry and then, a large number of steps has to be used to correctly take into acount
variations of the bottom topography.In this case the CPU time needed may become prohibitive
(see example below).

V.2 Numerical results - Propagation over sinusoidal bottom with no horizontal deviation.
As a first example, we illustrate the possibilities of the two techniques described above in
the case of transmission losses over a sinusoidal bottom. The bathymetry characteristics of
the wave guide are the same as described in [11]. We consider a 25 Hz source at x=6 km,
z =25 m in a ocean the water depth of which is given by d = 50 (3 - 5in(0.002.7.x/6)). The
water column and sea-bed are assumed to be homogeneous: ¢=1500 m/s p=1 in the water and
¢=1700m/s p=1.5g in the sediment.

In the paper published by Collins et al [11], comparisons between 3D and 2D parabolic
equation (3DPE and 2DPE) at depth z=30m and for different azimuthal directions (6=
40°,60°,80°,100°,120° and 140°) are presented. Due to horizontal coupling effects, most of
the differences between 2DPE and 3DPE appear for 0 lying in interval [80°,100°].
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Figure 6 displays published results for 6 = 80°: comparison between 3DPE (continuous curve)
and 2DPE (dotted curve) while figure.6b displays results obtained with MOCTESUMA,;
calculating only the direct field and neglecting deviations in transmission. Here, the size of
the steps used to describe bottom's variations is 4m (A/15). The CPU time needed for running
this version MOCTESUMA 3D in this configuration and using 40 modes amounts to 90
seconds for calculating modes families and coupling matrices on a SUN SPARK station 10.
The mean time needed to calculate in each horizontal direction is 0.4 sec (depends on the
number of encountered interfaces and in an area of 24km X 24km with 200 steps used to
describe bottom's variations).Results concerning the total field (forward + bakscattered-field)
are not presented here because, in this configuration, the reflected field is negligible. In this
case the CPU time needed for calculating the total field is approximatively 100 times the one
needed for a calculation of the direct field in the complete area (when 200 steps are used to
describe bottom's variations)

In this configuration, MOCTESUMA 3D gives results which converge to a solution between
the two ones obtained with 2DPE and 3DPE. This result does not contitute a surprise because
when the reflected field is negligible, the only differences between this version of
MOCTESUMA 3D and 2D codes lies in the fact that the "amplitude" of the transmitted field
evaluated with MOCTESUMA depends on the grazing angle of each incident wave impinging
the bottom variations.

V.3 Numerical results - Propagation over sinusoidal bottom with horizontal deviations.

In this section, the same wave guide as in the previous section (sinusoidal bottom) is
considered; the numerical model used is an experimental one which introduces an horizontal
deviation, at each isodepth encountered, by taking the direction of the most excited mode.
Two points have to be underlined:

Assuming that a given source mainly exites N modes, CPU time needed for the calculation
of the acoustic field is comparable to N times the one needed for calculating the acoustic field
assuming that no significant deviations occur in transmission. In this case, in order to be sure
that numerical results are convergent, the bottom topography has to be decribed with step
functions small enough to remain in the framework of adiabatic approximation (on mode only
excites one mode in transmission). As a consequence, the number of isodepth lines needed
to describe the bottom topography migh become such that the CPU time reaches unacceptable
values.For example, calculation of the acoustic field over the sinusoidal bottom described
above, in a square area (12 km x 12 km), with 200 steps to describe bottom variations (high
of the steps 2m = A/30 ), and using 30 modes need 30 h of CPU time on a SUN SPARK
STATION 10.

Running this version of MOCTESUMA, we first have to notice that convergent results are
difficult to obtain: horizontal coupling effects depend on the propagation direction of the
incident wave. It is observed that convergent results relatively to the size of the steps used



to describe bottom's variation are more easy to obtain for azimuthal directions around 6= 0°
than around 6= 90°. For example step size of 4m (A/15) is suffisant to obtain convergent
results up to 6= 30° while up to 6= 80° step size of 2m (A/30) is necessary.Except for 8 =
80° where small differencies can be observed, this version of MOCTESUMA 3D gives results
in good agrement with the ones published by Collins et al [11].
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Figures 7a and 8a display published resuits for = 60° and for 6 = 80°; comparison between
3DPE (continuous curve) and 2DPE (dotted curve) while figure.7b and figure 8b display
results obtained with MOCTESUMA. As it can be seen in figures 7a and 7b, differences
between the two results are small. A possible way to explain these differences may be the
following: for each mode and at each encountered interface, a new propagation direction is
evaluated; due to the discretisation, once the direction of propagation is parallel to one of the
isodepth lines used to describe the bottom's variations, no more deviation can numerically be
obtained. This phenomenon is not realistsic in cases of propagation over a continuous slope
(see ref [13]). As an illustration of the horizontal deviations, figure 9 displays directions
associated with the propagation of the second mode for two initial azimuthal angles.
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Figure 9: examples of horizontal deviations associated with the second mode.

In both cases, the source is located at x=12 km and y=0 km. Vertical lines display locations
of maximum and minimum depths of the sinusoidal bottom (continuous curves are associated
with 100 m depth and dashed curves with 200 m depth). The initial emission angle is
displayed with a dashed curve.

VI - CONCLUSION

This paper shows that it is possible to extend the Coupled Modes method to include the effect
of shear in the sediment and to compute the backscattered field as well as the forward field
including shear waves in range variable environment. Moreover the Galerkin method
presented in this paper seems to be well adapted to take into account continuous variations
with depth of compressional and shear velocities. In 2D cases, tests against other numerical
codes indicate good behaviour of the TS.ASM Coupled Modes model called
"MOCTESUMA". An important advantage of the Coupled Modes technique is found in the
case of a moving source over a variable bottom; modal functions can be computed in advance
for all possible water depths, and whatever the position of the source, the total field can be
recovered very fast, without having to start again the whole computation, like with the
Parabolic Equation technique.

In the 3D cases, results can be obtained with a reasonable CPU time provided assumptions
are made on horizontal deviations. It is presently difficult to evaluate the validity of these
assumptions since no reference result for low frequencies including foward and backward
propagation effects is available yet. It is believed that the present scheme used to handle
horizontal devations is not well adapted to the case where the propagation direction is close
to the bottom iso depth lines because once the modes direction is aligned with the bottom
isodepth line, no more horizontal deviation can occur, which is of course not the case with
a continuous bottom slope.
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