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Thin-layer reservoir has great significance for oil exploration and development. Seismic
characterization and monitoring of thin-layer reservoir has spatial advantage. New
seismic attributes and attributes combination analysis are proposed, including attributes
versus incidence angle, attributes versus scale, reflection coefficient spectrum and time-

frequency analysis for detailed thin-layer reservoir characterization.

1 Introduction

Thin-layer reservoirs are large in north china and other areas in the world.
It is also an important research topic for geophysicists. With the
development of oil exploration, detailed analysis of thin-layer reservoir is
needed.

Many researchers have done important work in this area. Widess studied
amplitude character of thin-layer using normal pulse reflections(1]. Lange,
Rafipour and Marfurt studied seismic attributes for thin-layer and fluid
discrimination[2][3][4]. Christopher and James analyzed the effect of the
converted wave and multiple on thin-bed and AVO modeling[5][6]. Chung
analyzed the precision of different approximation[7]. Liu studied the
amplitude attributes for thin-layer using acoustic wave equation modeling
method[8]. Ellison studied the modeling and analysis method for thin-layer
reservoir monitoring [9].

We studied new attributes and attributes combinations for thin-layer

reservoir characterization and monitoring.
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2 Thin-layer seismic modeling

Many author using convolution based modeling method in thin-layer
studies[1][5]. Reflectivity method can also be used[6]. We use a method
similar to that used by Liu[8], but our method is based on elastic equation.
There is no analytical expression for these method. Detailed derivation is
in appendix. Figurel is the modeling result for a simple model with only
three layers.
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Figurel Seismic modeling result for a simple model with three layers

3 Seismic attributes versus incidence angle for thin-layer

AVO has been widely used in oil exploration. Mazzotti also proposed the
combined amplitude, phase and frequency versus offset analysis for
layered bed[10]. We use this method in thin-layer reservoir analysis.

Three layer model is studied. The upper and lower layer are both shale and
the middle layer is sand. The rock properties for the model is in tablel,
which is excerpted from [11]. The thickness of the middle layer can be
changed. Later experiment is also based on this data. Figure2-Figure5 is

amplitude and phase versus incidence angle for the three models when bed
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thickness change. Conventional analysis used only amplitude. Our studies
show that phase can help separate different thickness of the bed. Figure6 is
amplitude and phase versus incidence angle for velocity change. There are
good correlation between amplitude, phase versus incidence angle and
velocity change.

Tablel rock properties used for the synthetic seismograms

Vp(n/s) Vs(m/s) p(g/ce) Sw
Shale 3900 2086 2.300
Sandl 3855 2202 2.320 1
Sand2 3597 2217 2.288 0.8
Sand3 3755 2254 2.192 0.2
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Figure 2 Amplitude versus incidence angle for different thickness (a) and phase versus
incidence angle for different thickness (b) for saturation=1
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Figure 3 Amplitude versus incidence angle for different thickness (a) and phase versus
incidence angle for different thickness (b) for saturation=0.8
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Figure 4 Amplitude versus incidence angle for different thickness (a). and phase versus
incidence angle for different thickness (b) for saturation=0.2
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Figure 5 Amplitude versus incidence angle for different velocity change (a) and phase

versus incidence angle for different velocity change (b) for saturation =1 and

thickness=0.25 wavelength
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Figure 6 Amplitude versus incidence angle for different velocity change (a) and phase
versus incidence angle for different velocity change (b) for saturation =1 and
thickness=0.125wavelength

4 Seismic attributes versus scale for thin-layer
Wavelet transform is helpful in analyzing energy and frequency
difference[12]. Seismic attributes versus scale is proposed and tested in

thin-layer analysis.

The theory of wavelet is not discussed here. We use continuous wavelet
transform and morlet wavelet is chosen.

Figure7 is amplitude versus scale for different bed thickness. Both
amplitude maximum and corresponding scale are different for bed
thickness change. So the new attributes can better delineate thin-layer bed
thickness. Figure8 is amplitude versus scale for different incidence angle.
When incidence angle increases, amplitude increases and scale decreases.

Figure9 is amplitude versus scale for different velocity change. Velocity

change mainly affects amplitude.
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Figure7 Amplitude versus scale for different bed thickness when incidence

angle is 0 (a) and Amplitude versus scale for different bed thickness when

incidence angle is 30(b).
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Figure8 Amplitude versus scale for different incidence angle when bed
thickness is 1/4 wavelength (a) and Amplitude versus scale for different
incidence angle when bed thickness is 1/8wavelength (b).



109

Q.18 £ r 7 z T
o = 0% velocity change
=== 1% velocity change
0ABH g~ 2% wvelocity change |
&= 3% velocity change
~g- 4% velocity chenge
AZ33 B
&
042 4
E
®
0.1 -
&
g
00& 8 o
2
£
£ooar -
<z
0.04 o
0.08F 4
] y >
0 10 20 0 40 50 80 70
Scale
(a)
AL r i T

w— (0% velocity change
=we 1% velocity change

B g~ 2% velocity change

e34r . - 3% veloclty change
5 ~g 4% velocity change

litude maximum
2 o 2
o - ne

g

Amp

0.04

.02}

o T 10 20 a0 40 50 50 70

(b)
Figure9 Amplitude versus scale for different velocity change when bed

thickness is 1/4 wavelength (a) and Amplitude versus scale for different
velocity change when bed thickness is 1/8wavelength (b).
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S Reflection coefficient spectrum for thin-layer thickness and velocity
change

Spectral decomposition has been successfully used in bed thickness
estimation and fluid discrimination[13][14]. The basis of spectral
decomposition is reflection coefficient spectrum dependence on thickness
and velocity change. Using reflection coefficient spectrum, thickness and
velocity change can be separated in thin-layer. Figurel10-11 is reflection
coefficient spectrum for different bed thickness and different velocity
change. Bed thickness mainly affect frequency of reflection coefficient
spectrum maximum. Velocity change mainly affect amplitude of reflection

coefficient spectrum maximum. Using these two attributes, the bed
thickness and velocity change can be discriminated.
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Figurell Reflection coefficient spectrum for different velocity change

when bed thickness is 1/4wavelength(a) and Reflection coefficient
spectrum for velocity change when bed thickness is 1/8wavelength (b).

6 Time-frequency analysis for thin-layer ‘

Time-frequency analysis can remove the tuning effect. The generalized S
transform is used in the analysis. Figure 12 is the reflection coefficient and
seismic trace. The seismic trace is affected by tuning. Figure 13 is the
generalized S transform of the seismic trace. When the frequency increases,
the spectrum has better correlation with reflection coefficient. Figure 14 is
the comparison of one frequency spectrum and reflection coefficient. It can
be shown that the position of maximum of spectrum can indicate the
position of reflection coefficient. Figure 15 is the recovered reflection
coefficient using time-frequency analysis. Time-frequency analysis is used
to delineate the structure of seismic trace and combined with amplitude of

the trace to form the recovered refection coefficient.
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coefficient
7 Conclusions and discussions
The thin-bed seismic signature is affected by both bed thickness and

reservoir property change. Using the proposed seismic attribute or
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combination analysis method, thin-bed reservoir can be characterized and

monitoring more precisely.
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Appendix
For three layers model, the forum (1) can be derived using displacement and stress

continuous conditions.
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Where @, « [, and @; « f3; is the p and s wave velocity. ij‘ i, i\ i) areangle
of refection s wave, reflection p wave, transmission s wave, fransmission p wave.
' A;\ B;\ 13 . Bf is the displacement amplitude of incidence p wave, reflection p
wave, reflection s wave, transmission p wave, transmission s wave.
The ratio of displacement amplitude can be defined as,
1 1 3 3
R =% g _Ba p _A4da , _Ba
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1 1 P 3 3

1

@)

Where, Rpp is reflection coefficient in frequency domain.






