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Recently, an analytic adjoint-based method of optimal nonlocal boundary control has
been proposed for inversion of a waveguide acoustic field using the wide-angle parabolic
equation [Meyer & Hermand, J. Acoust. Soc. Am. 117, 2937-2948 (2005)]. In this paper
a numerical extension of this approach is presented that allows the direct inversion for
the geoacoustic parameters which are embedded in a discrete representation of the non-
local boundary condition. The adjoint model is generated numerically and the inversion
is carried out jointly across multiple frequencies. To demonstrate the effectiveness of
the implemented numerical adjoint, an illustrative example is presented for the geoa-
coustic characterization of a Mediterranean shallow water environment using realistic
experimental conditions.

*The research reported in this paper was carried out in the main framework of a joint collabora-
tion in the SIGMAA project (Systéme pour Inversion Géoacoustique par Modélisation Adjointe
Automatisée).
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1. Introduction

Given an oceanic environment, a model G describing the acoustic propagation
y = G(x) for a set of input variables x and a differentiable scalar measure J(y)
which quantifies the fit between the model solution y and a corresponding set of
observations, a first order Taylor series approximation to the perturbation of the
cost function
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Here x’ and y’ denote perturbations of the model input and output, respectively, and
the indices k and j refer to the corresponding components. Following the description
of the adjoint derivation in Ref.! primes are used to denote linear estimates of
perturbation quantities. Considering the propagation model G as a sequence of
operations, such as e.g., individual range step integrations, physical or algorithmic
components of the model,

G(x) =Cn ((-- - (C2H{CL [Co(x)]}) .- ) 3)

the chain rule of elementary calculus yields a sequential formulation for y; = y;-(N)

in Eq. (2)
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where y§n) refers to the jth component of the output after step n. The matrix
that describes the set of derivatives appearing in Eq. (2) is called the Jacobian of
the model, determined with respect to model input perturbations. Since Eq. (2)
is linear in the perturbation quantities it is generally referred to as tangent linear
model.

In analogy to Eq. (1), an approximation to the perturbation of the cost function
with respect to model input perturbations is given by

aJ
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(5)
Application of the chain rule of elementary calculus for J = J(y) = J[G(x)] yields
a linear relationship comparable to Eq. (2):
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The reversal of the subscripts 7,k in Eq. (6) indicates that the Jacobian matrix in
Eq. (2) has been replaced by its transpose, or in more general mathematical terms
by its adjoint. Equation (6) is therefore called the adjoint model corresponding
to Eq. (2). Returning to the sequential formulation of the tangent linear model,
the adjoint of the sequence of operators in Eq. (4) is by definition the sequence
of the adjoint operators, taken in reverse order. In particular, if G represents the
range marching solution algorithm of the propagation model and the operators
C), describe a succession of elementary range step integrations, the corresponding
adjoint integration is always performed backwards in range.

2. Modular graph approach
2.1. General concept

The so-called modular graph is a process and data flow diagram which describes the
underlying acoustic model. It consists of a complete set of inter-connected modules
M, where the input of each module M, is provided by the output of its predecessors
My, p<n (Fig. 1). In general, the first module M; provides the propagation model
with the initial data and as such has no formal input variables x; whereas the last
module simply calculates the cost function J and has no other output variables y;.
There are no restrictions as to the size of each module; from a practical point of view
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Figure 1. Modular graph: Direct model. For each module M, the input and output variables
are denoted by z and y;, respectively.
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the decomposition may depend on the module semantic. Each module represents
one or more differentiable functions f;, which may be simple functions or complex
ones represented in turn by a sub-graph. Especially, modifying the model or the cost
function at any time is straightforward due to the modular graph structure. If the
underlying model is properly decomposed by the user into a number of differentiable
modules M, the modular graph methodology presents a convenient way to generate
the adjoint by encoding the local Jacobian and backpropagating the result to the
preceding modules. ‘

2.2. Lagrangian formalism

For the derivation of the reverse adjoint calculation scheme using Lagrangian for-
malism M, Z, O, and P shall denote in the following the complete sets of indices of
all modules, module input variables, module output variables and module parame-
ters of the system, respectively. One can then define three mappings

X:T—- M

ko X(k), (™)
Y:O—- M

i Y0), )
W:P—> M

1 — W(>), (%)

where X (k) represents the index of the module for which k is the index of one of
its input variables, Y(j) the index of the module for which j is the index of one of
its output variables, and W (i) returns the corresponding index of the module for
which 7 is the index of one of the module parameters. With these definitions the
module M,, can be formally defined as

Vi €Y (n), y; = fi ((@k)kex-1(n) (Wi)iew—1(n)) - (10)

This is the formal statement of the constraint that each output variable y; of a given
module M, be defined as a function f; of the input variables (zx)rex-1(n) and the
parameters (w;);ew-1(n) Of that module. At the same time each input variable
of the module M., is required to emanate from one and only one output variable of
a preceding module M; ;<,. This can be formally expressed as

Yk € X‘l(n) y Tk = Yg(k) (11)
with ¢k)e | JY ' (p). (12)
p=0

The Lagrangian £ of the system can then be defined as the cost function J measuring
the fit between the model result and the observations subject to the two constraints
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formulated in Egs. (10) and (11)—(12)
L=J= oy —fi (@rex— i) Wiew-1v()))
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The Lagra,nge multipliers o; and By can thus be obtained via
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The reverse calculation (backpropagation) of the Lagrange multipliers via Egs. (16)
and (17) (Fig. 2) is initiated at the last module for which S simply reduces to®

_o
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For comparison, the corresponding forward calculation scheme via the tangent linear
model is further illustrated in Appendix A. Once all Lagrange multipliers {c;, 8k}
of the system are computed, the Lagrangian formalism allows the calculation of the

local gradient of the cost function J with respect to any given model parameter w;
as

B (18)

oJ 0f;
awi = . Z ' Qi 87{1 . (19)
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Based on this reverse modular graph formalism an algorithmic tool can thus facili-
tate the generation and coding of the adjoint of the complex acoustic propagation
model. YAO?, the tool that is used in this paper further provides several rou-
tines to test the validity of the local derivatives of the different modules, the cost
function and an automatic validation can also be performed for the tangent lin-
ear and the adjoint model. In the past this semi-automatic adjoint approach has

2If the index k € 7 belongs to an input variable of the last module (cost function) the derivative

8L _ 8J . p _ _ 8J
reduces to Boy = Doy Br=0 & Br= Bar”
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Figure 2. Modular graph: Adjoint model. Illustration of the reverse calculation (backpropaga-
tion) of the Lagrange multipliers {o;, 8%}

been successfully applied e.g., for multi-dimensional variational data assimilation in
meteorological and climate modeling, for variational data assimilation with several
models in oceanography (three-dimensional modeling of phytoplankton growth®4)
and for land hydrology with the ISBA code of Météo-France®.

3. Wide-angle PE

In continuation of the analytic optimal control approach introduced in Ref. 6 the
propagation model G that is chosen to demonstrate the semi-automatic adjoint ap-
proach for ocean acoustic inversion purposes is the wide-angle PE due to Claerbout”.
For a stratified medium with varying density p(z), sound speed c¢(z) and absorption
loss a(2) the wide angle PE model can be summarized as

(2iko (L+ (V2 1) 8+ p (p75)
ool (T EL) ROV -y = 0
P(r,z =0) = 0 (20)
P(r=0,2) = S(z)
NLBC  [£-i#lv()|_, =0t |,

where ko = w/cy is a reference wavenumber, N(z) = n(z)[1 +ia(z)] and n(z) =
co/c(z) the refractive index, S(z) is an analytical source term and NLBC denotes the
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nonlocal boundary condition at the bottom. For convenience Yevick and Thomson’s
original notation for the NLBC &

9 RS .
o — 18| YL+ DAr, 2] =8 ) g1,79[(L +1 - j)Ar, 2] (21)
with the convolution coefficients g1,; and®
Pw (NZ-1)(1+ 3v2) +2
=Yk , 22
" \/ (1+57) .

is simplified here by dropping the range coordinate and using v¥;(z) = ¥[(L +
1 — §)Ar, z). Furthermore v? = 4i/koAr, and the subscripts w and b indicate the
water column and bottom, respectively.

The finite difference implementation of the direct problem given in Eq. (20) is
an implicit Crank-Nicolson scheme and the NLBC in Eq. (21) is treated as a first
order ODE in depth. Integration with respect to the depth z yields the calculation®
of the field on the boundary (H = z)

Y(H) = PA/282) y(H —1/2A%)

=e;

+ 1P/ sin (1/46A2) S " 15 [ (H) + 4 (H — 1/2A2)] . (23)
~ J

=eg

Following the discretization of the direct WAPE system, the forward model can
then be decomposed according to the modular graph concept described in Sec. 2.

3.1. Modular decomposition

The resulting modular graph (Fig. 3) is divided into four blocks (a)—(d), each of
which can be further subdivided vertically and/or horizontally. Given a finite dif-
ference discretization with NZ and N R gridpoints in depth and range respectively

e Space (a) is of the dimension NZx1 and is used to initialize the tridiagonal
finite difference matrices (Crank-Nicolson scheme), which are represented
by the modules diaGt and diaG respectively. The sound speed profile,
the depth-dependent density and sound attenuation in the water column
are represented accordingly by the by modules py,, ¢(z) and a,,. Further-
more, also the LU decomposition!® of the finite difference system which is
represented by modules bet and gag is initialized in this space.

b A similar treatment of Papadakis’ original spectral integral formulation of the NLBC (Neumann
to Dirichlet map) is proposed in Egs. (2.20)—(2.23) in Ref®.
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Figure 3. Modular graph representation of the WAPE NLBC model. The nomenclature is con-
sistent with the notation in Sec. 3. Modules with the superscript “LU” or “CN” implement the
LU-decomposition!® and the Crank-Nicolson scheme, respectively. Module “}” refers to the
summation of the boundary-field values in Eq. (23).

e Space (b) is of the dimension NZxN R, and in this space the acoustic field
represented by module % is calculated by solving the numerical system for
each range step r via LU-decomposition (modules res and izu).

e Space (c) is of the dimension 1x1 and it mainly serves for the initialization
of the sediment geoacoustic parameters {pp,cs, @} and the calculation of
related variables, such as e.g., refractive index N and parameters 3, e1, €2
of the NLBC (Egs. 21-23).

o Space (d) is of the dimension 1xNR, and is used to calculate the NLBC at
the water-sediment interface in order to determine the acoustic field at the
bottom (Eg. 23).

Horizontal layering within a block indicates adjacent finite difference depth cells
(2, 24 Az) and vertical subdivision represents successive range steps (r—Ar,r). The
dashed arrow further indicates that the module ) which represents the summation
of the boundary-field values in Eq. (23) depends on all the known values (history)
of the source modules at previous range steps, not just on the actual value of the
current instance.
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4. Optimization

With YAO the cost function is calculated automatically from the module that is
declared as cost module and from observations that are loaded from an external file.
An example of a multiple frequency cost function® with two regularization terms is
given by

m

J(x) = Z% [(Gi(x) ~ Yobs;i)T R (Gi(x) — 'l/’obs,i)]
i=1
+ 50 (x — xapr)T B™! (x — Xapr)
+5bll Vx|, (24)
where the index 7 denotes different source frequencies and v,[zobs,i; 1=1,...,marethe

corresponding observations at each frequency. The parameter X,p is included in the
cost function as an a priori estimate of the desired solution x, R and B represent
the covariance matrices for the field and the control parameter, respectively and
(a,b) are the two regularization parameters.

With a cost function specified in Eq. (24) the numerical implementation of the
direct model (Sec. 3) can be differentiated using YAO in reverse mode to gener-
ate the adjoint code. Equation (19) then allows the computation of the gradient
of the cost function with respect to the control variable. A Taylor test ensures
that the derivatives generated with the adjoint code agree with the corresponding
finite difference approximations for different directions of perturbation of the con-
trol variable. Minimization is generally accomplished through the use of standard
iterative gradient methods like e.g. conjugate gradient or Newton-type methods!?.
The routine M2QN1, which is used for the optimization process in the following
example, is a solver of bound constrained minimization problems and implements
a quasi-Newton (BFGS) technique with line-search. As an illustrative test case the
numerical adjoint approach is briefly demonstrated for the geoacoustic characteriza-
tion of a shallow water environment (Fig. 4). The control variable x is determined
in this case by the geoacoustic parameters {ps, cp, @} of the sediment.
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¢An extensive analytic treatment of multiple-frequency adjoint-based inversion of a locally reacting
impedance boundary condition for the standard PE can be found in Ref. 1!



100 80 60
‘ TL (dB)

Depth (m)

Density (g/cm?3)

60 (d)

Sound speed (km/s)

)
[+

2

»
[=]

(@

Depth (m)
[+23
(=]
Ow
606000000000A000000000CO000000

5

801 A
c

S

g

100 2
g

<

120k

1470 1480 1490 1500 1510 1520 1530 1540
Sound speed (m/s) lteration number

Figure 4. Adjoint-based geoacoustic characterization of a shallow water environment: Acoustic
fields for the three source frequencies 200, 400 and 500 Hz (a)—(c); acoustic fields at 9 km range, en-
vironmental input data and experimental configuration (d); evolution of the estimated parameters
vs. iteration number (e)—(g).

Appendix A. Tangent linear model

As a counterpart to the reverse calculation of the Lagrange multipliers in the adjoint
model (Fig. 2), the following illustration explains the tangent linear model, which
operates forward in the sense that it determines a gradient with respect to output
from a gradient with respect to input.
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