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In the past few decades the elastic properties of ocean bottom were usually ignored to simplify
problems by assuming a fluid seabed. Nevertheless, while it is acceptable to make such assumptions in
deep water, the effects of shear waves can never be omitted as long as sound waves penetrates into
ocean bottom, especially in shallow water where interactions between sound waves and elastic bottom
are very frequent. Hence, seabed has to be considered as elastic solids to correctly reveal the
propagating behavior of sound waves. A novel mathematical model and an implicit finite difference
method to obtain a numerical solution for predicting wave propagation in a 3D ocean coupled with
irregular fluid/solid interface are presented and developed into a computer code. Theoretical and
computational aspects of the proposed parabolic equation solution procedure are investigated. Several
numerical examples are included to show satisfactory results after comparing to known reference
solutions with shear effects.

1 Introduction

In 1989, Shang and Lee [2] introduced a model to treat the two-dimensional fluid/solid
horizontal interface following Ref. [11]. This model is limited to solving narrow-angle,
two-dimensional horizontal interface problems. Moreover, no solution of elastic PE was
incorporated into the fluid model. Later In 1998, Lee ef al. [3] extended the Shang-Lee
model to handle the horizontal fluid/solid interface three-dimensionally. Their approach is
to transform the fluid/solid interface for the Helmholtz equation into the conditions suitable
for the PE. A mathematical model was formulated to predict wave propagation in a coupled
three-dimensional fluid/solid media. In 1999, a numerical solution to this horizontal
fluid/solid interface model was introduced by Sheu et al. [4] who used a finite difference
technique to solve the above wave equation using a predictor-corrector procedure. In 2002,
Nagem and Lee [6] extended the horizontal fluid/solid interface model to handle the
irregular fluid/solid interface. However, after closely following their procedure, serious
mistakes are found so that their results can not be adopted. Therefore this dissertation is
based on the same fundamental relations and theories with Nagem’s work but subsequent
derivation is novel.

An efficient numerical model for 3D wave propagation in the ocean coupled with
elastic bottom and irregular interface by a PE method and a stable ODE solver is to be
developed. First the mathematical model is formulated, and then a computational model
which can generate a satisfactory solution using an accurate and stable numerical method is
developed in this dissertation. This model is designed and capable not only for coupled 3D
ocean acoustic wave propagation, but also for propagation in pure fluid or elastic solids,
provided the initial and boundary conditions as well as other environmental variables are
properly defined. Results of some examples with analytic solutions are also reported in this
dissertation to validate the model and to show the shear wave effects. A 3D test case is also
given to exhibit 3D effects.
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The paper is organized as follow. Section 2 derives the representative fluid/solid
coupled wave equations written in operator form. Following the theoretical formulation
summary, Sec. 3 briefly presents the development of the computational model. The
theoretical and computational aspects of the numerical algorithm and the resultant
difference equations are given. Section 4 is devoted to validate the numerical model by
several test cases. Summary of this paper is given in Sec. 5 remarking the major
conclusions and directions for future works. This paper is partly extracted from the first
author’s Ph.D. dissertation [16].

2 Theoretical Derivation

In this section, the theoretical part for the proposed numerical model is briefly reviewed. A
mathematical model has been developed by Lee et al. [3] which introduced a set of 3D
fluid/solid coupled wave equations. However, an alternative mathematical model is derived
in this paper instead of direct applying their result. A summary of this set of equations is
given in operators form of a set of parabolic equations. This summary outlines the
mathematical model involving the fluid wave equation, a set of interface vector equations,
and the elastic wave equations.

To be adapted for parabolic equation approximation, the displacement potentials
written in cylindrical coordinates can be related to the elastic potential functions by [12]
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2.1  Parabolic Elastic and Fluid Wave Equations in Operator Form

If the potential functions expressions (2.1) are substituted into the wave equations, and
considering the zero-divergence condition along with far-field approximation,
rearrangement of the results gives
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Equations in (2.2) are second-order partial differential in the variable 7, but each can
be separated into two uncoupled first order parabolic equations [12], one equation
representing waves which propagate in the direction of increasing # , and the other
equation representing waves which propagate in the direction of decreasing 7 . The
separation gives the elastic outgoing wave equations in operator form
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where the operators are defined as



67

1(* 19 1(o> 18
=) 29 | [ =—| T 2| @.4)
o = (622 r? aezj r k,%(azZ r* 00
Rearrangement of Eq. (2.3) gives the parabolic elastic wave equations in a matrix form
A, 0 0 0 ]
A 0 A, 0 0 4
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where the operators in coefficients are defined as

A, =ik, (-1+fT+L; ), A, =ik (-1+\+1;), B; _ 1 _ e

ik 1+ L,
A fluid can be regarded as an elastic material of no rigidity, therefore the fundamentals

and derivations of the wave equations for both media are the same. Thus for fluid, Eq. (2.5)
reduces to

%(Af) = [Af](Af)’ (2.7)

where the operator is defined as

(& 12
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and kf is the fluid wave number.

2.2 Parabolic Interface Vector Equations in Operator Form

For the formulation of the irregular fluids-elastic interface conditions, a set of unit vectors
must be defined which describes the geometry of an arbitrary orientation. This set of
vectors is defined by:

n (nr NP/ ) is the unit vector normal to interface;
t (tr, ty,1, ) is the unit vector in plane of the interface;

s (Sr 89,8, ) is the second vector in the tangent plane of the interface perpendicular to t.

Along with the orientation vectors, the irregular fluid/solid interface conditions are
formulated by means of tensor vectors as

wn=uln, p,=-ne'n, t'on=0, sTon=0. (2.9)

In practice, the geometry can be simplified by introducing the cylindrical sloping interface

where the angle to the slope is «#, and the specific orientations are defined in following, as
shown in Fig. 2.1.



68

> For the horizontal interface, y = (0, 0,1), t= (1, 0, 0) ,and s=(0,1,0)-

» For the irregular cylindrical sloping interface, = (-sin$,0,cos ), t=(cos$,0,sinJ),
and s =(0,1,0).

If $=0, the irregular interface cases are all reduced to the case of horizontal interface.
Note that > +7n? =5t —n,t, = cos® $+sin* 9=1.

Fig. 2.1Schematic of irregular cylindrical sloping interface
For the orientations introduced in the above, the general irregular interface conditions
are simplified to give explicitly

—sinJu, +cos 9w, =—sin Ju, +cos Sw,, (2.10)
-p, =sin’ 9o, —2sin $cos 9o, +cos’ Jo,, (2.11)
(cos2 9-sin* 9)o,, =sindcosI(a,, -5, ), (2.12)
and
sin 90, =cosdo,,. (2.13)

Further simplification can be made by combining Eqgs. (2.11) and (2.12) to eliminate o, -
The following equation is obtained where o is involved implicitly: v
—cosIp, =—sindo,, +cosJo,. (2.14)

Solving the interface conditions in terms of parabolic potentials, the set of irregular
fluid/solid interface conditions are written in a matrix operator form as

A} dy dyp dy dy dys AJI‘\

5 4 dy dy dy dy dy || 4]

o B |= dy, dy dy dy dy Bl |, (2.15)
B} dy dyp dy dy dg B,
B! dy, dy, dy; dy di I\BZI
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where superscript I stands for irregular interface, and the elements dij of the above

matrix considering far-field condition are given by
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2.3 Representative Coupled 3D Wave Equations in PE system form

' T
Let VI(Af,A},A:,BrI ,Bé,BZI ,Ae,Br,Ba,Bz) . The superscript T stands for the

transpose. Combining the parabolic elastic wave equations in operator matrix form (2.5),
the parabolic fluid wave equation in operator matrix form (2.7), and the parabolic irregular
interface vector equations in operator matrix form (2.15) gives the representative coupled
3D wave equations in the following operator matrix form:

N _mv-+g, 21
or

where
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The vector G is a function related to boundary conditions. The operators dl.j couple the

elements between the interface and the fluid medium as well as the elastic medium.

After a PE system is formulated in operators form, the next stage is to transform Eq.
(2.21) into a numerical model. As the operator matrix M is discretized and Eq. (2.21)
becomes a system of difference equations, the coupling between medium and interface will
be obviously shown by visualizing the discretized coefficients matrix M.

3 Numerical Modeling

This section is focused on transforming the theoretical PE expression into a numerical
model consisting of three parts: theoretical development, computational aspects, and the
development of the computer code.

3.1 Scheme Development

It is expected that for a coupled problem in heterogeneous media invested in this paper, the
computational scheme will be based on an ODE, or split-step concept.

3.1.1 Marching Scheme

Assume that coupled wave PE system (2.21) has the discrete local solution as

V(r+Ar)=eA’MV(r)+(eA’M ——I)M'IG (r). (3.1

By direct replacing the exponential matrix in Eq. (3.1) by (1,1) Padé approximant, the
result is obtained as the well known Crank-Nicolson scheme:

(I-1AM) V™ =(I+ L AM) V" + ArG". (3.2)

Equation (3.2) is chosen to be the essential marching scheme of the proposed numerical
solution in this paper.
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If (2,2) Padé approximant is applied to the exponential matrix in Eq. (3.1), the
following higher order scheme is obtained

[ —%ArM+é(ArM)2}V"“=[I+%ArM+—115(ArM)2JV”+ArG". (33)

Note that higher, such as (3,3), Padé approximants will make the coefficient of G” not
simple as Ar only.

3.1.2 Numerical ODE Formulation for Wave and Interface Equations

To obtain the coefficients matrix of numerical scheme, all the derivatives are expressed in
finite difference formulation. The complete derivation and results are very lengthy and
therefore referred to the first author’s Ph.D. dissertation [16]. Here only parts of them are
presented as examples.

For elastic and fluid wave equations, the operators containing derivatives are in a
square root. Therefore it is necessary to have an approximation for the square root. The
square root approximation can lead to computational phase errors. These phase errors have
the physical meaning of limitation in propagation angle [8, 10]. Higher order
approximations reduce the phase errors and result in wide-angle models [9]. This issue has
been broadly investigated and many wide-angle models were developed in the past two
decades. It has been proved that narrow-angle formulation (<23°) is not adequate for
sound propagation in shallow water and a wide-angle model must be used instead [7, 8, 10].
Nevertheless, most of those models referred to be wide-angle in depth because they are
only considering 2-D problems and thus the azimuthal angle is not well discussed until
recent years. .

Among numbers of square root approximations, a second order approximation [7] is
written as

Vit z ;1+%Z—%ZZ+O(Z3). (3.4)
For parabolic wave equations, the operator Z is
_1(& 1@ (3.5)
wri1 =\ a2 P e ) |

In the above, f,L,T represent of fluid, longitudinal, and transverse elastic quantities,

respectively. If second order is considered in depth where as only first order is considered
in azimuth, then the square root approximation is

1+L 6—2+i & el A - & (3.6)
K\ezr ro6° )" 2k o 8k ozt 2k 06°

The above expression is also adopted in Ref. [5]. For consistency and higher accuracy, all
the difference formulae are chosen of the second order.

As for (,/1.,. Z)'I in parabolic elastic wave equations for B, and B,, it can be

approximated via a Taylor series expansion with the polynomial functions

-1
2 2 2 4 2

N S L || e e S S 6
K\o 7 o6 2%% 22 8k' az* 2k 66
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With Egs. (3.6) and (3.7), the parabolic elastic and fluid wave equations can be
explicitly discretized. Take fluid wave equation (2.7) as example:

04, .
f.7) _
PY Ay [Af(i+2, o Asina, j)] T l:Af(i+1, oA, j)}

v (3.8)
Thrg [Af(i,j—H) + Af(i,j—l) ] + afAf(i,j) ’
where
o= ik, L, ik, _ ik, .
8(k,Az) 2(ksaz)  2(k,Az) (3.9)
ik, ik, 3ik, ik,

27

Zror ?W ay=-

2 + . 4 + 2| ‘
(kaz)  4(kyhz)  (kra6)
The subscripts Z, j represent the i th grid point in depth, and j th grid point in azimuth.

Note that if A& is chosen so large as 1/A@ approaches zero, the equations reduce to
two-dimensional case.

In equation for B, , the operator coefficient of B, is approximated using Eq. (3.7) and
resulting in

1 ( aj ifo 10 39 1 0 (3.10)
ER—— — SN [ — . .
ik, JI+L, \ 0z) kp\0z 2k &2 8k &2 2kgr® 060°az

In equation for B,, the operator coefficient of B, is also approximated using Eq. GB.7

and resulting in

: ( : aj ifo L o 3 0 1 21 e
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As a summary, with the square root approximations and proper discretization, the
numerical ODE formulations for elastic and fluid wave equations like Eq. (3.8) and the
interface equations can be obtained. The complete results are referred to the first author’s
Ph.D. dissertation [16] and not shown here. Results for wave equations in Ref. [5] are

similar except for its equation of B, where an error occurs in their derivation of wave

equation for B, .

3.2 Computational Aspects

In order to develop the computer code, a number of computational aspects have to be taken
into consideration.

For simplicity, taking a horizontal interface problem as an example, Fig. 3.1
schematically shows computation grids and settings. As shown in Fig. 3.1, the upper
boundary which usually refers to the ocean surface is assumed to be flat and pressure
released

4| =o. | (3.12)
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The lower boundary denoted as rigid bottom is assumed to be flat and force the first
derivatives with respect to depth of all quantities to be zero

L - (3.13)

0z |,p,

resulting to be a total reflecting boundary. The bottom boundary can also be set to zero for
simplicity.

PPLI PRI

Fig. 3.1 Schematic of computation grids and settings
In order not to use nonphysical points outside the boundaries in difference equations
for the grid points near boundaries, forward/backward difference formulas are applied. For
example, at z = Az the second order forward difference formula of the forth depth
4

derivative, ——

7 is given as

z=Az
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%—9pl+16p2-14p3+6p4—p5 ’ (3.14)
(2)°

where p, vanishes if pressure release condition is considered. This formula induces

inconsistency error which will be shown in a test case in next section.
Nevertheless, the mirror effect, p-, = —p,, at pressure release boundaries, p,=0,can

be applied so that central difference formula can still be applicable without using

nonphysical points as Fig. 3.2 shows. Therefore the second order central difference
4
formula of the forth depth derivative, op is given as

Z4 z=Az
P APy 6P ~4P+ P —p +6p —4p,+p, _Sp-4p,+py (3.15)
4 - 4 - 4 :
(Az) (4z) (4z)
(o]
P © Nonphysical points
28|

O
p,=0, p,=-p
by

Fig. 3.2 Schématic of pressure release boundary in discrete space.

Comparing Egs. (3.14) and (3.15), it can be noted that considering mirror effect at
pressure release boundaries not only maintains the consistency of using central difference
formulas but also reduces the number of grid points from five to three at z = Az .

For the port/starboard sidewall boundaries, they are not pressure released or rigid
under most circumstances except for numerical tests. In realistic situations, they are not
known and have to be computed and provided as boundary conditions of Dirichlet type

Qle:o,n = foa- (3.16)

2D (r——z) solutions may be the most straightforward answers provided for sidewall

boundaries. :

A computer code is developed to implement the marching implicit scheme (3.2).
However, it must be mentioned that the mathematic and numerical development of the
proposed model does not contain the density variation and other capability enhancement,
the computer code is basically a research code. It still needs some efforts to turn this code
into a practically working code like other well known models, say, FOR3D.

The geometry of propagation has been presented in Fig. 3.1. The data structure should
be particularly noticed since this model deals with a heterogeneous problem. That is, at a
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single grid point, there are more than one unknown quantities. Each field quantities
A, 4,,B,,B,,B, is stored in separate matrices at the beginning and in its final form.

However, during the calculation stage, solving the unknowns requires these field quantities
to be organized as a single vector at each range step. The coefficient matrix corresponding
to this unknown vector is thus constructed as the following figure shows along with the
structure of the unknown vector. The figure shows an example of 9 azimuth sections
(side-wall boundaries excluded). Blue dots represent nonzero elements which are the
coefficients of the difference equations. It can be seen that the matrix is formed as a
band-matrix. Dark lines indicate different azimuth sections whereas the red dashed lines
showing the five interface equations between the fluid and the elastic wave equations
which are colored with light blue and olive boxes, respectively. The unknown vector is a
column shown at right hand side of the coefficient matrix.

Fig. 3.3 Data structure of the coefficient matrix and unknown vector.

4 Model Appraisal

In this section, several test cases are investigated to validate the model and also to show the
model’s application and ability. Exact solutions to the coupled 3D wave propagation
problems are practically unachievable due to complexities in environment and boundaries.
To validate models claiming to solve these problems is therefore limited.

In the following, several examples will be presented to start from the simplest
two-dimensional range-independent problem for waves in fluid only, and finally to the
coupled 3D wave propagation model with irregular interface.
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4.1 2D Fluid Waves in Range-Independent Environment

Being the first step to validate the model, this example is focused on testing the numerical
marching scheme Eq. (3.2). Also the effect of considering the mirror effect on pressure
release boundaries as prescribed in previous section is presented.

Considering a two-dimensional (r,2) plane, the upper and lower boundaries are both

flat and pressure-released, and the medium in between the two boundaries is pure fluid only
without any energy absorption. The environment is totally range-independent.

Numerical ODE formulation for the 2D fluid wave equation can be obtained by
applying the square root approximation (3.4) and (3.5) resulting similar to Eq. (3.6) as

a A 2 4
% ik, _1_5_?_2__%3_4 4, (4.1)
or 2k, 0z 8k, oz
To find the general solution to the above equation, one can use the method of separation of

variables given the initial condition A, (0, z) =sin (E) and obtain
H

A, =exp4—ir

(z/H) (n/H) ,Sm(ﬂj_ (4.2)
2k, 8k} H

Using the presented numerical model, a banded matrix is formed to solve the problem
with computation parameters set as Az =0.11 HAr=32,, where sound speed ¢ is 1500

my/s, sound frequency f is 200 Hz, water depth H is 60 m, wavelength 3 , is 7.5 m. Figure

4.1 compares the absolute value of computed solutions using (1,1)/(2,2) Padé scheme and
sided/central difference near boundaries for range 0 - 12 km. It can be clearly seen that
errors accumulate from the upper and lower boundaries if mirror effect is not considered
and sided difference is applied. Also higher order scheme, such as (2,2) Padé scheme, is
more sensitive to such errors from boundaries. However, if mirror effect is taken into
account, then the errors are removed and (2,2) Padé scheme produces better results as it is
expected.

error norm = 9.5492e-1 error norm = 3.3786e-3
o
1o frrmeen@d I O
-a o8 08
30 4 -4~ 30
al S 40t 0.8 ‘a8 —]
80 piiigi4 LSS s’y | bttty | Ry
805 2 4 5 8 10 12 805 2 4 B 8 10 12
(1,1) Pade + sided difference near boundaries {1.1) Pade + central difference with mirror effect near boundaries
‘error norm = 6.9677e+020 efrornorm = 1.7978e-3
o - - < - o
K- 9
i \ P 10 T O TTTIIIIITTIIIIIIIIIIII TN p:ﬁ,li?"j;
] N oa e
30} - -
AOF 08 0.8 ]
SO0 0.4 SiTIITIILLIITITIIIIILI LTI TINI ,5 :‘_{;L‘;'.::,‘
Iy 3 el .
o 2 4 6 8 10 12 o 2 4 3 8 10 12
(2,2) Pade + sided difference near boundaries (2,2) Pade + central difference with mirror effect near boundaries

Fig. 4.1 Comparison between the computed solutions using (1,1)/(2,2) Padé scheme and sided/central difference
near boundaries.
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By this test case, the marching scheme using (1 ,1)/(2,2) Padé approximations are
validated. The improvement of considering mirror effect near pressure release boundaries
is also presented. This suggests the consideration of mirror effect in all computations when
pressure release boundaries occur.

4.2 2D Elastic Waves in Range-Independent Environment

The elastic wave governing equations are coupled for 3D propagation as two individual
systems, {Ae} and {Br,Be,Bz} . For 2D propagation, @-derivatives are dropped so that

B, is uncoupled from the equation of B,, therefore the governing equations are further

uncoupled into three independent sets, {Ae} R {Ba} , and {Br,Bz}. Provided there is no

coupling mechanism on boundaries, 2D elastic waves problem can be resolved by
separately finding the solutions of the three systems.
Given the same flat and pressure-released upper and lower boundaries as in the

previous case for fluid wave problem, since equations of {Ae} and {B,} are of the same

form as that of {Af

can be obtained. Hence here we will focus on the two-variable coupled system, {Br,Bz} .

} , similar analytic solutions and results presented in the previous case

Note that under these pressure-released boundary conditions, if B, is initially unexcited,
ie., B,

is reduced to the same form of { A f} , and the whole B, field will be completely silent,

=0, then B, will be decoupled from the equation of B . Therefore the problem

r=0

thus the equation of B, turns out to be trivial and its calculation may be saved.

After applying square root approximations (3.6) and (3.7), the two-variable coupled
system, {B,,Bz} writes

0B, . 18 10
==k T A2 ond A4 B,
or 2k; 0z° 8k, Oz

B, (18 138 i(fe 10 38
=ik | =55 | B T o e A | B
or 2k; 0z 8k, Oz k. \ 0z 2k; 0z° 8k; Oz
As before, the analytic solution to Eq. (4.3) is desired. The strategy to solve Eq. (4.3) is
summarized as two steps. The first step is to solve the parabolic equation for B_,and this is

(4.3)

followed by solving the parabolic equation for B, with the part containing derivatives of
B, known as the inhomogeneous source term.

By the method of separation of variables, B, can be derived in the form of

B, =exp (——ikngr)[C1 exp(£,z)+C,exp (~£,z)+Cysin (£,z)+C,cos (Zzz):l , (44)

where the functions with underline are the eigenfunctions, and El,fz are related to the

eigenvalues as
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0y, =2k 1+267 £1. (4.5)

Note that the given boundary conditions B, (r,0)=B,(r,H)=0 are not sufficient to define
the coefficients C,. However, with proper initial conditions input, the coefficients can be

determined. It is obvious that g (ﬂ zj for any integer 7 can satisfy the zero boundary
H
conditions. Further more, it is of the same form with one of the eigenfunctions, sin(zzz) .

Therefore, if the initial filed is given as C, sin (ﬂ z] , where C; is a constant, then
H

B,(0,z)=C, exp(£,z)+C, exp(—£,z)+ C,sin(£,z)+C,cos(£,z) = C, sin[%z], (4.6)

the coefficients in Eq. (4.4) can be determined as C, =C, =C, =0, and C, =C, 2 known

constant. Also it leads to L, = nrw , so that the eigenvalues are given as
1 C ‘
=] | o @7
2\ k,H 8\ kH
and thus the analytic solutions to B, is then written as
1 ! ’
B, =C,exp|—ik, | | —= | += P71 |rlsin 222 ). (4.8)
2\ kH 8\ k,H H

The analytic solution to 4 P in the previous case can be verified by the above equation as
well where n=1,C, =1.

Next step is to substitute Eq. (4.8) into Eq. (4.3) to solve the equation for B . After the
substitution, it reduces to

2 4
(10 12,
or 2k; 0z" 8k, Oz

3 5
+C0iexp(—ikTgfr) il +—1—[ o ] +§( i J cos(ﬂzj.
LH 2\GH) 8\ H H )

Equation (4.9) is an inhomogeneous PDE which can be solved by eigenfunction expansion
method [13]. If n=2,C,=1 is chosen to have the initial condition for B, being

(4.9)

B (r 0) =sin (2_” 2) , and a static initial condition for B, ,ie., B (r,O) =0, the solution
z H H r

to Eqg. (4.9) is obtained as

B = i 4n4, (e‘Azr —e'A"')

. niw
n=1,3,5,- 7[(112 _4)(‘4" _ Az) Sm(g Z} (4.10)




4y =i 2( 4 J+4[ x ]+12(——’5—j , Ay =2ik; [L] J{ z J :
ke, H ke H kH WH) \kH) |

4 =ik lﬂr—erl Zal n=13,5,
"N 2\kH) 8\kH) | 7

1B fr2) 12, {r2)t

1m{B, 1.2} ImB,(r. 20}

15 20

] s
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Fig. 4.2 Absolute value, real part, and imaginary part of the numerical solutions to 2D elastic wave problem (4.3).

Comparison of computed and analytic solutions of B,

T L4 ¥ T T T T T T
sar ~~=(1,1) Pade 7
—-=(2,2) Pade

——— Analytic Solution|

sl adetata s o

Absolute valus of B, at seleted depth of 18 m

Fig. 4.3 Comparison of (1,1)/(2,2) Padé schemes and analytic solutions of Br at depth of 18 m.



81

Given the depth H =99 m, wave frequency f =100 Hz, transverse wave speed
¢, =900 n/s, the numerical solutions of B, and B, are plotted in Fig. 4.2 for range 0 -
20 km considering the absorption coefficient being 0.5 dB per wavelength. Setting the
computational parameters Az=0.24, and Ar=84,, the numerical results of B, agree

well with the analytic solution at selected depth of 18 m shown in Fig. 4.3. However, (1,1)
Padé scheme does not provide as good prediction as (2,2) Padé scheme for this case.

4.3 Coupled 2D Waves with Irregular Interface

In this test case, at first a down-slope wedge is considered then an up-slope wedge. Both
slope ratios are 1:20, or about +2.86°, and the water depth at source location is 200 m. A
Greene’s source is placed at depth of 30 m, the computation parameters are set as
Az =0.18m, Ar =3.6m , and the absorption coefficient being 0.5 dB per wavelength.

Figure 4.4 shows the computed solutions in water column,

A4 f‘ , in the upper two plots.

Up-slope

0014

e JOWNESIOPE, GT= 40 m/s (A p~1800: 1)
———Down-slope, C, =800 m/s (A1 n~3:2)
werneeen Up-Slope, CT=4D s (A1~ 1800: 1)
Up-stope. CT= 00 mis{hipu~3:2)

0012

(X355 SR

OD1Q 015 ’.I 1?5 é 2{5 i"a 3':5
Range (km)
Fig. 4.4 Comparison between the calculated results of up/down-slope wedge with low/high shear wave speed.
The lower plot compares the depth averaged energy along the propagation range for
four difference situations. The green solid line represents the result calculated in

down-slope wedge with very low shear wave speed (¢, = 40 m/s) comparing to the red
dashed line where the shear wave speed is 900 m/s. These two line does not differ too much,
i.e., shear effect is not obvious in down-slope wedge. In up-slope wedge, energy in water

column is expected apparently decreasing due to more interaction between wave and
bottom as shown in the figure. The blue dotted line represents the result calculated in
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up-slope wedge with shear wave speed being 40 m/s whereas the black solid line is the case
with ¢, =900 m/s. It can be seen from the figure that there is noticeable difference due to

shear effect for up-slope wedge. More energy of water column is transferred into bottom as
shear wave.

4.4  Coupled 3D Waves with Irregular Interface

It has to be noticed as mentioned before that the analytic solutions to such problems are
inaccessible.

For simplicity, the upper and lower boundary conditions are pressure released
boundaries, and the two side-wall boundary conditions are zeros as well. Given the
environment setting being the same as before except for total depth of H =70 m and a

range-dependent bathymetry H, (r) For sound frequency of 25 Hz, the initial field is
placed at 7, =1082.3 m to satisfy far-field approximation kr>100, i=f,L,T . The
computational parameters are set as: Ar=044,=144 m, Af=0.5" , and
Az =0.0154, =0.54 m. It must be noted that Az is chosen so small to have accurate
solutions because of the interface effect. Starting from 7, , the initial field is propagated 150

m which is about 10 range steps, and the computation span is 20 degrees which consists 21
sections including two side-wall boundaries. The bathymetry is defined as

H,(r,)=35H,(r,+50)=36,H, (r, +100) =34, and H, (r, +150) =37, as shown in Fig.

4.5. It must be emphasized that the bathymetry is given of axial symmetry to be consistent
with the irregular interface defined and shown in Fig. 2.1.

‘ e Ar=0.44, =14.4m
. AO=0.5
. Az=0.0154, =0.54m

Depth (m)

Range (X-axis, m)

1060
Range (Y-axis, m)

Fig. 4.5 Schematic of 3D bathymetry and other computational settings.
To have a 3D initial field instead of an Nx2D field, all the field is initially static except
for 4, (r,,0=0,z) is excited by a normalized sinc function. The calculated results are

plotted in Figs. 4.6 — 4.7 where the absolute values of 4 ,,4,,B,,B,, B, are shown. The
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solutions are selected from three specified ranges: the next step to the initial field, halfway

on the propagation path which is five steps from 7, and the final step of the computation.

@y t+ar
0

i0
20

30

10 -8 8 4 2 2 4 6 8
IN@r+5Ar
0
—_
Ew
i e
ar
(03
0O ax
10 8 -6 4 2 0 2 4 6 8
IAl@r +10Ar
0
10
20
30
-10 -8 -6 -4 -2 0 2 4 6 8
Azimuth (degree

Fig. 4.6 Absolute values of A 7 oat selected ranges.

From Fig. 4.6 it can be observed that the energy of Af from the initial field is

gradually propagated towards the two side-wall yet a great part of the energy remains at
@ = 0°. Note that since the environment is also symmetric with respect to the 6 =0" plane,
the solutions perfectly reveal this symmetry as well.

In Fig. 4.7 the transmitted energy from fluid to solid layer is clear displayed. The
energy is continuously input to 4, along the propagation range so that the absolute values

are keeping increasing. 3D propagation is also obviously noticed. The results of B, shown

in Fig. 4.7(b) present a major difference from what observed in previous plots of Af and

A, . The energy does not focus on the central plane but spread out from the plane. Also it is

very interesting that at midway on the propagation bath, the energy is less than at the first
range step. This has revealed that the energy can not only be transferred into but also output
through coupling. Recalling 2D problems where the unknowns can be grouped as two sets,
the mathematic or numerical formulations of the wave equations and interface equations

have indicated that there is no coupling mechanism between { 4,4, Bg} and {B B},

and this coupling only exists in 3D problems. Similar outcome can be expected in results of
B, presented in subsequent figure after the plot of B,. Similar to the results of 4, plotted
in Fig. 4.7(a), the results of B, shown in Fig. 4.7(c) reveal the characteristics of energy

spreading along the interface but not deep into the bottom. As mentioned in the above
discussion of the results of B , Fig. 4.7(d) shows expected feature similar to B . From
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interface equations or numerical formulation, this feature shared by B, and B, is due to
azimuth coupling at interface and thus is a kind of 3D effect.
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Fig. 4.7 Absolute values of (a) 4, (b) Br () B, @ Bz at selected ranges.

The 3D example tested in this section is highly restrained and simplified to focus on
the primary concerns, i.e., realization of the proposed model and how it works with coupled
fluid/solid medium with irregular interface. It has to be emphasized that a major difference
between considering fluid bottom and real elastic bottom is the demand in computation
resources especially the CPU time. This is due to the increasing of the number of physical
quantities in elastic bottom, from single one to four. The additional three, B ,B,,B,,

account for shear waves. Under the condition of same grid points, the coefficient matrix
considering shear waves is 4x4 times larger than fluid bottom. In other words, the range
of interested problem is therefore practically limited. Nevertheless, this kind of technical
shortness can be expected to be resolved just like decades ago, and the emphasis must be
placed on pursuing the completeness in describing the problem and its solution.

5 Summary

This paper has introduced a modified mathematical model to 3D coupled fluid/solid wave
propagation problem and also developed its computational model and a research code. The
numerical results produced by this computer code has presented good agreements with
analytic solutions which reveals that this computer code produces satisfactory results. The
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validation has also shown that the stable marching scheme which implements implicit finite
difference method is accurate.

The emphasis has been placed on the development of the numerical model which can
solve 3D fluid, elastic, or fluid/solid coupled wave propagation problems. The underlying
idea is applying parabolic displacement potential functions to rewrite the wave equations
and interface equations, and then using implicit finite difference method to solve the ODE
system. Padé series expansion has been used to improve the accuracy in range direction.
Since the proposed numerical model and computer code are new, analytical validation of
the scheme has been conducted for several problems. The proposed model has been
successfully applied to simulate the fluid/solid coupled wave problem.

From both mathematical and numerical modeling, two major differences can be found
in 2D/3D comparison, with/without shear effect. A 2D problem is a simplified special case

from 3D problems where all the five unknowns { 4,,4,,B,,B,, BZ} representing the

parabolic functions of displacement potentials are coupled together and must be solved
simultaneously. The simplest case is 2D problem without shear effect and its unknowns are

{ 4, Ae} only, that means the energy will be shared by the two quantities only. This is also
true for 3D problem without shear effect. If shear effect is to be considered in a 2D problem
with only Af excited by a waterborne source, then the unknowns become { A, 4, Bg}
which means the energy will now be shared by one more quantity, B,. Note that if
{ B, Bz} is not initially static, then this set of unknowns should also be solved yet as an
independent problem so that the solution of { 4,, Ae, Be} will not be affected. For the most
general case, a 3D problem sustaining shear effect includes all the unknowns
{ 4,,4,,B,,B,, B,} , and the energy will shared by these five quantities. In other words,
the energy of compressional waves (Af and A,) can be overestimated if shear effect is

ignored whether in 2D or 3D problems. Also the energy can be overestimated even when
shear effect is considered in 2D case, because the energy coupling mechanism between

{ A4, Be} and {B,,B,} is missed. Table 5.1 compares 2D/3D cases with/without shear

effect.
Table 5.1 Comparison of 2D/3D cases with/without shear effect.

s {4,,4,,B,B,,B,) N _

3D effects are found to occur from four sources. First, the initial field can decisively
affect the propagation pattern including how the waves spread in azimuth direction. Second,
the @-coupling terms (derivatives with respect to azimuth) in the governing equations and
interface conditions reflect the constitutional properties of 3D wave propagation. Third, the
environment, including the geometry and the acoustic parameters of the medium, has direct
influence on the wave propagation path by reflection, refraction, and scattering. Hence a
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3D environment will definitely induce 3D effects. Finally, 3D distributed boundaries will
induce 3D effects as well. :

Although the irregular fluid/solid interface investigated in this dissertation is
range-dependent, @ -variation is not considered in the formulation. As Fig. 2.1 shows, the

second unit tangent vector s(sr,se,sz) is set to (0,1,0) so that a cylindrical irregular

interface is obtained. In other words, this interface is of axial symmetry and this is why it is
drawn as a frustum of right circular cone in Fig. 2.1. This assumption is a serious drawback
of the model since such interface will only reflect waves in fixed @ planes, i.e., geometric
& -coupling at interface is ignored. To deal with a real 3D problem, the interface has to be
generalized to include variation of bathymetry in @ direction. For example, if the interface
as shown in Fig. 2.1 is counterclockwise rotated an angle ¢ respective to unit direction

vector t, then three unit direction vectors are given by

1 —sindcos@, —sing, cosdcosp
tr= cos 9, 0, sind . (4.12)
S sindsing, cos@, cosdsing

Although a modified mathematical formulation and a novel numerical model for 3D
fluid/solid coupled wave propagation problem considering irregular interface this
dissertation has been developed and coded as a research prototype program C4PM, it is
only a beginning for this challenging topic. There are several issues regarding
mathematical and numerical enhancements to the modeling and theoretical completeness,
namely, wide angle expansion in azimuth, proof of the energy-conserving property such as
the proof for LSS wave equation given in Ref. [15]. Each of these issues can be a great
improvement and validity proof of the proposed model.
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